模块根的能量边界及其应用

IF 1.1 2区 数学 Q1 MATHEMATICS
Bryce Kerr, Ilya D. Shkredov, Igor E. Shparlinski, Alexandru Zaharescu
{"title":"模块根的能量边界及其应用","authors":"Bryce Kerr, Ilya D. Shkredov, Igor E. Shparlinski, Alexandru Zaharescu","doi":"10.1017/s1474748023000397","DOIUrl":null,"url":null,"abstract":"<p>We generalise and improve some recent bounds for additive energies of modular roots. Our arguments use a variety of techniques, including those from additive combinatorics, algebraic number theory and the geometry of numbers. We give applications of these results to new bounds on correlations between <span>Salié</span> sums and to a new equidistribution estimate for the set of modular roots of primes.</p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"227 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ENERGY BOUNDS FOR MODULAR ROOTS AND THEIR APPLICATIONS\",\"authors\":\"Bryce Kerr, Ilya D. Shkredov, Igor E. Shparlinski, Alexandru Zaharescu\",\"doi\":\"10.1017/s1474748023000397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We generalise and improve some recent bounds for additive energies of modular roots. Our arguments use a variety of techniques, including those from additive combinatorics, algebraic number theory and the geometry of numbers. We give applications of these results to new bounds on correlations between <span>Salié</span> sums and to a new equidistribution estimate for the set of modular roots of primes.</p>\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"227 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748023000397\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748023000397","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们概括并改进了最近关于模数根的加法能量的一些界限。我们的论证使用了多种技术,包括来自加法组合学、代数数论和数几何学的技术。我们将这些结果应用于萨利埃和之间相关性的新界限,以及素数的模数根集的新等分布估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ENERGY BOUNDS FOR MODULAR ROOTS AND THEIR APPLICATIONS

We generalise and improve some recent bounds for additive energies of modular roots. Our arguments use a variety of techniques, including those from additive combinatorics, algebraic number theory and the geometry of numbers. We give applications of these results to new bounds on correlations between Salié sums and to a new equidistribution estimate for the set of modular roots of primes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信