利用 CuanCl 分子工程学有效优化宽带隙过氧化物太阳能电池的缺陷界面

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Maoxia Xu, Rui Liu, Haoran Ye, Haorong Ren, Jinyu Li, Chen Deng, Zetan Zhang, Chengbin Yang, Kexin Hu, Xiaoran Sun and Hua Yu
{"title":"利用 CuanCl 分子工程学有效优化宽带隙过氧化物太阳能电池的缺陷界面","authors":"Maoxia Xu, Rui Liu, Haoran Ye, Haorong Ren, Jinyu Li, Chen Deng, Zetan Zhang, Chengbin Yang, Kexin Hu, Xiaoran Sun and Hua Yu","doi":"10.1039/D3TA07690C","DOIUrl":null,"url":null,"abstract":"<p >In wide-bandgap (WBG) perovskite solar cells (PSCs), the energy level misalignment between the hole transport layer (HTL) and the perovskite layer, coupled with the high-density defects at their buried interface, causes severe non-radiative recombination within PSCs. Herein, CuanCl (carbamoyl-guanidine amidino urea salt, hydrochloride salt) with multifunctional molecular groups is introduced to optimize the WBG perovskite/HTL interface. This strategic introduction aims to suppress non-radiative recombination, consequently mitigating open-circuit voltage loss (<em>V</em><small><sub>loss</sub></small>). The findings demonstrate the bifunctional chemical passivation effect of the carbonyl (C<img>O) and imine cations (<img>NH<small><sup>+</sup></small>–) within CuanCl molecules on surface defects of perovskite, effectively suppressing diverse defect-assisted non-radiative recombination. Furthermore, the surface-bound CuanCl on the perovskite provides supplementary electronic states at the valence band maximum, achieving a more harmonized energy level alignment and effectively inhibiting charge recombination at the interface. The resultant CuanCl-treated WBG PSCs produce a high open-circuit voltage of 1.27 V, and a decent fill factor of 77.28%, which leads to a power conversion efficiency of 19.36%. Furthermore, the devices exhibit superior stability, maintaining 84% of their initial efficiency after 1000 hours in air with a humidity of 40%. This work provides new insight for optimizing a defective interface with the molecular engineering approach for fabricating efficient and stable WBG PSCs.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 15","pages":" 8982-8990"},"PeriodicalIF":9.5000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ta/d3ta07690c?page=search","citationCount":"0","resultStr":"{\"title\":\"Molecular engineering with CuanCl for effective optimization of a defective interface for wide-bandgap perovskite solar cells†\",\"authors\":\"Maoxia Xu, Rui Liu, Haoran Ye, Haorong Ren, Jinyu Li, Chen Deng, Zetan Zhang, Chengbin Yang, Kexin Hu, Xiaoran Sun and Hua Yu\",\"doi\":\"10.1039/D3TA07690C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In wide-bandgap (WBG) perovskite solar cells (PSCs), the energy level misalignment between the hole transport layer (HTL) and the perovskite layer, coupled with the high-density defects at their buried interface, causes severe non-radiative recombination within PSCs. Herein, CuanCl (carbamoyl-guanidine amidino urea salt, hydrochloride salt) with multifunctional molecular groups is introduced to optimize the WBG perovskite/HTL interface. This strategic introduction aims to suppress non-radiative recombination, consequently mitigating open-circuit voltage loss (<em>V</em><small><sub>loss</sub></small>). The findings demonstrate the bifunctional chemical passivation effect of the carbonyl (C<img>O) and imine cations (<img>NH<small><sup>+</sup></small>–) within CuanCl molecules on surface defects of perovskite, effectively suppressing diverse defect-assisted non-radiative recombination. Furthermore, the surface-bound CuanCl on the perovskite provides supplementary electronic states at the valence band maximum, achieving a more harmonized energy level alignment and effectively inhibiting charge recombination at the interface. The resultant CuanCl-treated WBG PSCs produce a high open-circuit voltage of 1.27 V, and a decent fill factor of 77.28%, which leads to a power conversion efficiency of 19.36%. Furthermore, the devices exhibit superior stability, maintaining 84% of their initial efficiency after 1000 hours in air with a humidity of 40%. This work provides new insight for optimizing a defective interface with the molecular engineering approach for fabricating efficient and stable WBG PSCs.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 15\",\"pages\":\" 8982-8990\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ta/d3ta07690c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta07690c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta07690c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在宽带隙(WBG)过氧化物太阳能电池(PSCs)中,空穴传输层(HTL)和过氧化物层之间的能级错位,再加上它们埋藏界面上的高密度缺陷,导致 PSCs 内部发生严重的非辐射重组。在此,我们引入了具有多功能分子基团的 CuanCl(氨基甲酰基胍脒脲盐,盐酸盐)来优化 WBG 包晶石/HTL 界面。这一策略旨在抑制非辐射重组,从而减轻开路电压损失(Vloss)。研究结果表明,CuanCl 分子中的羰基(C=O)和亚胺阳离子(=NH+-)对包晶表面缺陷具有有效的双功能钝化作用。此外,包晶表面结合的 CuanCl 可在能隙中产生更多的局部态,从而促进更多转移电子的积累,使器件的能级排列更加协调。因此,经过 CuanCl 处理的 WBG PSC 能产生 1.27V 的高开路电压,功率转换效率高达 19.36%。此外,这些器件还表现出卓越的稳定性,在湿度为 40% 的空气中放置 1000 小时后,仍能保持 84% 的初始效率。这项工作为利用分子工程方法优化缺陷界面,制造高效稳定的 WBG PSCs 提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular engineering with CuanCl for effective optimization of a defective interface for wide-bandgap perovskite solar cells†

Molecular engineering with CuanCl for effective optimization of a defective interface for wide-bandgap perovskite solar cells†

In wide-bandgap (WBG) perovskite solar cells (PSCs), the energy level misalignment between the hole transport layer (HTL) and the perovskite layer, coupled with the high-density defects at their buried interface, causes severe non-radiative recombination within PSCs. Herein, CuanCl (carbamoyl-guanidine amidino urea salt, hydrochloride salt) with multifunctional molecular groups is introduced to optimize the WBG perovskite/HTL interface. This strategic introduction aims to suppress non-radiative recombination, consequently mitigating open-circuit voltage loss (Vloss). The findings demonstrate the bifunctional chemical passivation effect of the carbonyl (CO) and imine cations (NH+–) within CuanCl molecules on surface defects of perovskite, effectively suppressing diverse defect-assisted non-radiative recombination. Furthermore, the surface-bound CuanCl on the perovskite provides supplementary electronic states at the valence band maximum, achieving a more harmonized energy level alignment and effectively inhibiting charge recombination at the interface. The resultant CuanCl-treated WBG PSCs produce a high open-circuit voltage of 1.27 V, and a decent fill factor of 77.28%, which leads to a power conversion efficiency of 19.36%. Furthermore, the devices exhibit superior stability, maintaining 84% of their initial efficiency after 1000 hours in air with a humidity of 40%. This work provides new insight for optimizing a defective interface with the molecular engineering approach for fabricating efficient and stable WBG PSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信