{"title":"热胀冷缩的精确解法","authors":"Oem Trivedi","doi":"10.1016/j.astropartphys.2024.102951","DOIUrl":null,"url":null,"abstract":"<div><p>The theory of cosmic inflation has received a great amount of deserved attention in recent years due to it’s stunning predictions about the early universe. Alongside the usual cold inflation paradigm, warm inflation has garnered a huge amount of interest in modern inflationary studies. It’s peculiar features and specifically different predictions from cold inflation have led to a substantial amount of literature about it. Various modified cosmological scenarios have also been studied in the warm inflationary regime. In this work, we introduce the exact solution approach for warm inflation. This approach allows one to directly study warm inflationary regime in a variety of modified cosmological scenarios. We begin by outlining our method and show that it generalizes the modified Friedmann approach of Del Campo, and reduces to the well known Hamilton–Jacobi formalism for inflation in particular limits. We also find the perturbation spectra for cosmological and tensor perturbations in the early universe, and then apply our method to study warm inflation in a Tsallis entropy modified Friedmann universe. We end our paper with some concluding remarks on the domain of applicability of our work.</p></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"158 ","pages":"Article 102951"},"PeriodicalIF":4.2000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The exact solution approach to warm inflation\",\"authors\":\"Oem Trivedi\",\"doi\":\"10.1016/j.astropartphys.2024.102951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The theory of cosmic inflation has received a great amount of deserved attention in recent years due to it’s stunning predictions about the early universe. Alongside the usual cold inflation paradigm, warm inflation has garnered a huge amount of interest in modern inflationary studies. It’s peculiar features and specifically different predictions from cold inflation have led to a substantial amount of literature about it. Various modified cosmological scenarios have also been studied in the warm inflationary regime. In this work, we introduce the exact solution approach for warm inflation. This approach allows one to directly study warm inflationary regime in a variety of modified cosmological scenarios. We begin by outlining our method and show that it generalizes the modified Friedmann approach of Del Campo, and reduces to the well known Hamilton–Jacobi formalism for inflation in particular limits. We also find the perturbation spectra for cosmological and tensor perturbations in the early universe, and then apply our method to study warm inflation in a Tsallis entropy modified Friedmann universe. We end our paper with some concluding remarks on the domain of applicability of our work.</p></div>\",\"PeriodicalId\":55439,\"journal\":{\"name\":\"Astroparticle Physics\",\"volume\":\"158 \",\"pages\":\"Article 102951\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927650524000288\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650524000288","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The theory of cosmic inflation has received a great amount of deserved attention in recent years due to it’s stunning predictions about the early universe. Alongside the usual cold inflation paradigm, warm inflation has garnered a huge amount of interest in modern inflationary studies. It’s peculiar features and specifically different predictions from cold inflation have led to a substantial amount of literature about it. Various modified cosmological scenarios have also been studied in the warm inflationary regime. In this work, we introduce the exact solution approach for warm inflation. This approach allows one to directly study warm inflationary regime in a variety of modified cosmological scenarios. We begin by outlining our method and show that it generalizes the modified Friedmann approach of Del Campo, and reduces to the well known Hamilton–Jacobi formalism for inflation in particular limits. We also find the perturbation spectra for cosmological and tensor perturbations in the early universe, and then apply our method to study warm inflation in a Tsallis entropy modified Friedmann universe. We end our paper with some concluding remarks on the domain of applicability of our work.
期刊介绍:
Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.