钛植入物上的生物污垢:一种新型聚氧乙烯和过氧化物配方,用于原位清除胶粒和多物种口腔生物膜。

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Regenerative Biomaterials Pub Date : 2024-02-10 eCollection Date: 2024-01-01 DOI:10.1093/rb/rbae014
Badra Hussain, Roger Simm, Jaime Bueno, Savvas Giannettou, Ali-Oddin Naemi, Ståle Petter Lyngstadaas, Håvard Jostein Haugen
{"title":"钛植入物上的生物污垢:一种新型聚氧乙烯和过氧化物配方,用于原位清除胶粒和多物种口腔生物膜。","authors":"Badra Hussain, Roger Simm, Jaime Bueno, Savvas Giannettou, Ali-Oddin Naemi, Ståle Petter Lyngstadaas, Håvard Jostein Haugen","doi":"10.1093/rb/rbae014","DOIUrl":null,"url":null,"abstract":"<p><p>Eradicating biofouling from implant surfaces is essential in treating peri-implant infections, as it directly addresses the microbial source for infection and inflammation around dental implants. This controlled laboratory study examines the effectiveness of the four commercially available debridement solutions '(EDTA (Prefgel<sup>®</sup>), NaOCl (Perisolv<sup>®</sup>), H<sub>2</sub>O<sub>2</sub> (Sigma-Aldrich) and Chlorhexidine (GUM<sup>®</sup> Paroex<sup>®</sup>))' in removing the acquired pellicle, preventing pellicle re-formation and removing of a multi-species oral biofilm growing on a titanium implant surface, and compare the results with the effect of a novel formulation of a peroxide-activated 'Poloxamer gel (Nubone<sup>®</sup> Clean)'. Evaluation of pellicle removal and re-formation was conducted using scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy to assess the surface morphology, elemental composition and chemical surface composition. Hydrophilicity was assessed through contact angle measurements. The multi-species biofilm model included <i>Streptococcus oralis</i>, <i>Fusobacterium nucleatum</i> and <i>Aggregatibacter actinomycetemcomitans</i>, reflecting the natural oral microbiome's complexity. Biofilm biomass was quantified using safranin staining, biofilm viability was evaluated using confocal laser scanning microscopy, and SEM was used for morphological analyses of the biofilm. Results indicated that while no single agent completely eradicated the biofilm, the 'Poloxamer gel' activated with 'H<sub>2</sub>O<sub>2</sub>' exhibited promising results. It minimized re-contamination of the pellicle by significantly lowering the contact angle, indicating enhanced hydrophilicity. This combination also showed a notable reduction in carbon contaminants, suggesting the effective removal of organic residues from the titanium surface, in addition to effectively reducing viable bacterial counts. In conclusion, the 'Poloxamer gel + H<sub>2</sub>O<sub>2</sub>' combination emerged as a promising chemical decontamination strategy for peri-implant diseases. It underlines the importance of tailoring treatment methods to the unique microbial challenges in peri-implant diseases and the necessity of combining chemical decontaminating strategies with established mechanical cleaning procedures for optimal management of peri-implant diseases.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae014"},"PeriodicalIF":5.6000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907064/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biofouling on titanium implants: a novel formulation of poloxamer and peroxide for <i>in situ</i> removal of pellicle and multi-species oral biofilm.\",\"authors\":\"Badra Hussain, Roger Simm, Jaime Bueno, Savvas Giannettou, Ali-Oddin Naemi, Ståle Petter Lyngstadaas, Håvard Jostein Haugen\",\"doi\":\"10.1093/rb/rbae014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eradicating biofouling from implant surfaces is essential in treating peri-implant infections, as it directly addresses the microbial source for infection and inflammation around dental implants. This controlled laboratory study examines the effectiveness of the four commercially available debridement solutions '(EDTA (Prefgel<sup>®</sup>), NaOCl (Perisolv<sup>®</sup>), H<sub>2</sub>O<sub>2</sub> (Sigma-Aldrich) and Chlorhexidine (GUM<sup>®</sup> Paroex<sup>®</sup>))' in removing the acquired pellicle, preventing pellicle re-formation and removing of a multi-species oral biofilm growing on a titanium implant surface, and compare the results with the effect of a novel formulation of a peroxide-activated 'Poloxamer gel (Nubone<sup>®</sup> Clean)'. Evaluation of pellicle removal and re-formation was conducted using scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy to assess the surface morphology, elemental composition and chemical surface composition. Hydrophilicity was assessed through contact angle measurements. The multi-species biofilm model included <i>Streptococcus oralis</i>, <i>Fusobacterium nucleatum</i> and <i>Aggregatibacter actinomycetemcomitans</i>, reflecting the natural oral microbiome's complexity. Biofilm biomass was quantified using safranin staining, biofilm viability was evaluated using confocal laser scanning microscopy, and SEM was used for morphological analyses of the biofilm. Results indicated that while no single agent completely eradicated the biofilm, the 'Poloxamer gel' activated with 'H<sub>2</sub>O<sub>2</sub>' exhibited promising results. It minimized re-contamination of the pellicle by significantly lowering the contact angle, indicating enhanced hydrophilicity. This combination also showed a notable reduction in carbon contaminants, suggesting the effective removal of organic residues from the titanium surface, in addition to effectively reducing viable bacterial counts. In conclusion, the 'Poloxamer gel + H<sub>2</sub>O<sub>2</sub>' combination emerged as a promising chemical decontamination strategy for peri-implant diseases. It underlines the importance of tailoring treatment methods to the unique microbial challenges in peri-implant diseases and the necessity of combining chemical decontaminating strategies with established mechanical cleaning procedures for optimal management of peri-implant diseases.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"11 \",\"pages\":\"rbae014\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907064/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbae014\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae014","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

根除种植体表面的生物污垢对治疗种植体周围感染至关重要,因为它直接解决了牙科种植体周围感染和炎症的微生物源。本实验室对照研究考察了四种市售清创溶液 "EDTA(Prefgel®)、NaOCl(Perisolv®)、H2O2(Sigma-Aldrich)和洗必泰(GUM® Paroex®)"在清除获得性胶粒方面的效果、防止胶粒重新形成并清除生长在钛种植体表面的多菌种口腔生物膜,并将结果与过氧化物激活的新型配方 "聚氧乙烯醚凝胶(Nubone® Clean)"的效果进行比较。使用扫描电子显微镜(SEM)、能量色散 X 射线光谱法和 X 射线光电子能谱法评估表面形态、元素组成和表面化学成分,从而对胶粒的去除和重新形成进行评估。亲水性通过接触角测量进行评估。多菌种生物膜模型包括口腔链球菌、核酸镰刀菌和放线杆菌,反映了天然口腔微生物群的复杂性。生物膜生物量用黄樟素染色法进行量化,生物膜活力用激光共聚焦扫描显微镜进行评估,生物膜形态分析用扫描电镜进行。结果表明,虽然没有一种药剂能完全根除生物膜,但用 "H2O2 "激活的 "Poloxamer 凝胶 "显示出了良好的效果。它通过显著降低接触角,最大限度地减少了胶粒的再污染,这表明亲水性得到了增强。这种组合还显著减少了碳污染物,表明除了有效减少细菌数量外,还有效清除了钛表面的有机残留物。总之,"Poloxamer 凝胶 + H2O2 "组合是一种很有前景的种植体周围疾病化学净化策略。它强调了针对种植体周围疾病中独特的微生物挑战定制治疗方法的重要性,以及将化学去污策略与既定的机械清洁程序相结合以优化种植体周围疾病管理的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biofouling on titanium implants: a novel formulation of poloxamer and peroxide for in situ removal of pellicle and multi-species oral biofilm.

Eradicating biofouling from implant surfaces is essential in treating peri-implant infections, as it directly addresses the microbial source for infection and inflammation around dental implants. This controlled laboratory study examines the effectiveness of the four commercially available debridement solutions '(EDTA (Prefgel®), NaOCl (Perisolv®), H2O2 (Sigma-Aldrich) and Chlorhexidine (GUM® Paroex®))' in removing the acquired pellicle, preventing pellicle re-formation and removing of a multi-species oral biofilm growing on a titanium implant surface, and compare the results with the effect of a novel formulation of a peroxide-activated 'Poloxamer gel (Nubone® Clean)'. Evaluation of pellicle removal and re-formation was conducted using scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy to assess the surface morphology, elemental composition and chemical surface composition. Hydrophilicity was assessed through contact angle measurements. The multi-species biofilm model included Streptococcus oralis, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans, reflecting the natural oral microbiome's complexity. Biofilm biomass was quantified using safranin staining, biofilm viability was evaluated using confocal laser scanning microscopy, and SEM was used for morphological analyses of the biofilm. Results indicated that while no single agent completely eradicated the biofilm, the 'Poloxamer gel' activated with 'H2O2' exhibited promising results. It minimized re-contamination of the pellicle by significantly lowering the contact angle, indicating enhanced hydrophilicity. This combination also showed a notable reduction in carbon contaminants, suggesting the effective removal of organic residues from the titanium surface, in addition to effectively reducing viable bacterial counts. In conclusion, the 'Poloxamer gel + H2O2' combination emerged as a promising chemical decontamination strategy for peri-implant diseases. It underlines the importance of tailoring treatment methods to the unique microbial challenges in peri-implant diseases and the necessity of combining chemical decontaminating strategies with established mechanical cleaning procedures for optimal management of peri-implant diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信