{"title":"优化缬草根中生物活性化合物的提取率:D-优化设计。","authors":"Arash Mokhtari, Mansoor Omidi, Morteza Ebrahimi, Houshang Alizadeh, Ahmad Sobhani, Pejman Azadi, Nafiseh Noormohammadi, Mozhdeh Shafaie","doi":"10.1080/10826068.2023.2297709","DOIUrl":null,"url":null,"abstract":"<p><p>It is estimated that 80% of all synthetic drugs are derived from medicinal plants, and nowadays, many synthetic drugs are derived from medicinal plants. <i>Valeriana officinalis</i> can treat many diseases of the nervous system. A crucial aspect of valerian extract is that it inhibits the proliferation of breast cancer cells. To optimize the yield of bioactive compounds in the <i>V. officinalis</i> root extraction, a response surface methodology-based D-optimal design was used. To fulfill this aim, the effects of various factors such as solvent type and concentration, mixing temperature, ultrasound time, and drying method were examined. The optimal conditions for solvent percentages, mixing temperature, ultrasound time, solvent type, and drying methods were determined to be 94.88%, 25 °C, 48.95 min, methanol, and microwave, respectively, with a desirability of 0.921. The predicted valerenic acid, total phenols, total flavonoids, and antioxidant activity in <i>V. officinalis</i> extract were 1.19 (mg/g DW), 8.22 (mg/g DW), 5.27 (mg/g DW), and 92.64%, respectively. In optimal conditions, the extracted amounts of valerenic acid, total phenols, total flavonoids, and antioxidant activity were 2.07 mg/g DW, 7.96 mg/g DW, 5.52 mg/g DW, and 78.68%, respectively, which were consistent with the model predicted amounts (based on 95% prediction interval). This study could be useful as a model for demonstrating the efficacy of microwave drying to maximize the biochemical content of <i>V. officinalis</i>, as well as the antioxidant activity of the root extracts of <i>V. officinalis</i> on industrial scale.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"838-848"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the extract yield of bioactive compounds in <i>Valeriana officinalis</i> root: a D-optimal design.\",\"authors\":\"Arash Mokhtari, Mansoor Omidi, Morteza Ebrahimi, Houshang Alizadeh, Ahmad Sobhani, Pejman Azadi, Nafiseh Noormohammadi, Mozhdeh Shafaie\",\"doi\":\"10.1080/10826068.2023.2297709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is estimated that 80% of all synthetic drugs are derived from medicinal plants, and nowadays, many synthetic drugs are derived from medicinal plants. <i>Valeriana officinalis</i> can treat many diseases of the nervous system. A crucial aspect of valerian extract is that it inhibits the proliferation of breast cancer cells. To optimize the yield of bioactive compounds in the <i>V. officinalis</i> root extraction, a response surface methodology-based D-optimal design was used. To fulfill this aim, the effects of various factors such as solvent type and concentration, mixing temperature, ultrasound time, and drying method were examined. The optimal conditions for solvent percentages, mixing temperature, ultrasound time, solvent type, and drying methods were determined to be 94.88%, 25 °C, 48.95 min, methanol, and microwave, respectively, with a desirability of 0.921. The predicted valerenic acid, total phenols, total flavonoids, and antioxidant activity in <i>V. officinalis</i> extract were 1.19 (mg/g DW), 8.22 (mg/g DW), 5.27 (mg/g DW), and 92.64%, respectively. In optimal conditions, the extracted amounts of valerenic acid, total phenols, total flavonoids, and antioxidant activity were 2.07 mg/g DW, 7.96 mg/g DW, 5.52 mg/g DW, and 78.68%, respectively, which were consistent with the model predicted amounts (based on 95% prediction interval). This study could be useful as a model for demonstrating the efficacy of microwave drying to maximize the biochemical content of <i>V. officinalis</i>, as well as the antioxidant activity of the root extracts of <i>V. officinalis</i> on industrial scale.</p>\",\"PeriodicalId\":20401,\"journal\":{\"name\":\"Preparative Biochemistry & Biotechnology\",\"volume\":\" \",\"pages\":\"838-848\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2023.2297709\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2023.2297709","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Optimizing the extract yield of bioactive compounds in Valeriana officinalis root: a D-optimal design.
It is estimated that 80% of all synthetic drugs are derived from medicinal plants, and nowadays, many synthetic drugs are derived from medicinal plants. Valeriana officinalis can treat many diseases of the nervous system. A crucial aspect of valerian extract is that it inhibits the proliferation of breast cancer cells. To optimize the yield of bioactive compounds in the V. officinalis root extraction, a response surface methodology-based D-optimal design was used. To fulfill this aim, the effects of various factors such as solvent type and concentration, mixing temperature, ultrasound time, and drying method were examined. The optimal conditions for solvent percentages, mixing temperature, ultrasound time, solvent type, and drying methods were determined to be 94.88%, 25 °C, 48.95 min, methanol, and microwave, respectively, with a desirability of 0.921. The predicted valerenic acid, total phenols, total flavonoids, and antioxidant activity in V. officinalis extract were 1.19 (mg/g DW), 8.22 (mg/g DW), 5.27 (mg/g DW), and 92.64%, respectively. In optimal conditions, the extracted amounts of valerenic acid, total phenols, total flavonoids, and antioxidant activity were 2.07 mg/g DW, 7.96 mg/g DW, 5.52 mg/g DW, and 78.68%, respectively, which were consistent with the model predicted amounts (based on 95% prediction interval). This study could be useful as a model for demonstrating the efficacy of microwave drying to maximize the biochemical content of V. officinalis, as well as the antioxidant activity of the root extracts of V. officinalis on industrial scale.
期刊介绍:
Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.