金合欢锯屑生物炭对 S-甲草胺的吸附特性。

IF 1.4 4区 农林科学 Q4 ENVIRONMENTAL SCIENCES
Quach An Binh, Tran Van Khanh, Xuan Thanh Bui, Khanh Nguyen Di, Duy Toan Pham
{"title":"金合欢锯屑生物炭对 S-甲草胺的吸附特性。","authors":"Quach An Binh, Tran Van Khanh, Xuan Thanh Bui, Khanh Nguyen Di, Duy Toan Pham","doi":"10.1080/03601234.2024.2322767","DOIUrl":null,"url":null,"abstract":"<p><p>The adsorption mechanism of S-Metolachlor in an aqueous solution by sawdust biochar derived from <i>Acacia auriculiformis</i> (SAB) was studied. SAB was manufactured at 500 °C for 4 h under oxygen-limited conditions and characterized for SEM, EDS, pHpzc, BET, and FTIR. The adsorption kinetics, isotherm, and diffusion studies of S-Metolachlor and SAB were further explored. Moreover, the effects of the solution pH were examined on the adsorption of S-Metolachlor by SAB. The BET analysis of SAB was achieved at 106.74 m<sup>2</sup>.g<b><sup>-</sup></b><sup>1</sup> and the solution pH did not significantly influence the S-Metolachlor adsorption. The adsorption data were fitted into a Langmuir isotherm and the PSO model. The film diffusion coefficient <b><i>D<sub>f</sub></i></b> (4.93 <b>×</b> 10<b><sup>-</sup></b><sup>11</sup> to 8.17 <b>×</b> 10<b><sup>-</sup></b><sup>11</sup> m<sup>2</sup>.s<b><sup>-</sup></b><sup>1</sup>) and the particle diffusion coefficient <b><i>D<sub>p</sub></i></b> (1.68 <b>×</b> 10<b><sup>-</sup></b><sup>11</sup> to 2.65 <b>×</b> 10<b><sup>-</sup></b><sup>11</sup> m<sup>2</sup>.s<b><sup>-</sup></b><sup>1</sup>) were determined and the rate-limiting step of S-Metolachlor adsorption and SAB was governed by liquid film diffusion. The S-Metolachlor adsorption process onto SAB was controlled by multiple mechanisms, including pore filling, H-bonding, hydrophobic interaction, and π-π EDA interactions. H-bonding is the main interaction for the adsorption of S-Metolachlor and SAB. Conclusively, the study illustrates that biochar produced from <i>Acacia auriculiformis</i> sawdust possessed effective adsorption properties for S-Metolachlor herbicide.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":" ","pages":"192-201"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption characteristics of S-Metolachlor onto the sawdust biochar derived from <i>Acacia auriculiformis</i>.\",\"authors\":\"Quach An Binh, Tran Van Khanh, Xuan Thanh Bui, Khanh Nguyen Di, Duy Toan Pham\",\"doi\":\"10.1080/03601234.2024.2322767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The adsorption mechanism of S-Metolachlor in an aqueous solution by sawdust biochar derived from <i>Acacia auriculiformis</i> (SAB) was studied. SAB was manufactured at 500 °C for 4 h under oxygen-limited conditions and characterized for SEM, EDS, pHpzc, BET, and FTIR. The adsorption kinetics, isotherm, and diffusion studies of S-Metolachlor and SAB were further explored. Moreover, the effects of the solution pH were examined on the adsorption of S-Metolachlor by SAB. The BET analysis of SAB was achieved at 106.74 m<sup>2</sup>.g<b><sup>-</sup></b><sup>1</sup> and the solution pH did not significantly influence the S-Metolachlor adsorption. The adsorption data were fitted into a Langmuir isotherm and the PSO model. The film diffusion coefficient <b><i>D<sub>f</sub></i></b> (4.93 <b>×</b> 10<b><sup>-</sup></b><sup>11</sup> to 8.17 <b>×</b> 10<b><sup>-</sup></b><sup>11</sup> m<sup>2</sup>.s<b><sup>-</sup></b><sup>1</sup>) and the particle diffusion coefficient <b><i>D<sub>p</sub></i></b> (1.68 <b>×</b> 10<b><sup>-</sup></b><sup>11</sup> to 2.65 <b>×</b> 10<b><sup>-</sup></b><sup>11</sup> m<sup>2</sup>.s<b><sup>-</sup></b><sup>1</sup>) were determined and the rate-limiting step of S-Metolachlor adsorption and SAB was governed by liquid film diffusion. The S-Metolachlor adsorption process onto SAB was controlled by multiple mechanisms, including pore filling, H-bonding, hydrophobic interaction, and π-π EDA interactions. H-bonding is the main interaction for the adsorption of S-Metolachlor and SAB. Conclusively, the study illustrates that biochar produced from <i>Acacia auriculiformis</i> sawdust possessed effective adsorption properties for S-Metolachlor herbicide.</p>\",\"PeriodicalId\":15720,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"volume\":\" \",\"pages\":\"192-201\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2024.2322767\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2024.2322767","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

研究了从金合欢(Acacia auriculiformis)中提取的锯末生物炭(SAB)对水溶液中 S-甲草胺的吸附机理。SAB 在限氧条件下于 500 °C 下制造 4 小时,并对其进行了 SEM、EDS、pHpzc、BET 和 FTIR 表征。进一步探讨了 S-Metolachlor 和 SAB 的吸附动力学、等温线和扩散研究。此外,还研究了溶液 pH 值对 SAB 吸附 S-Metolachlor 的影响。SAB 的 BET 分析值为 106.74 m2.g-1,而溶液的 pH 值对 S-Metolachlor 的吸附没有显著影响。吸附数据被拟合为 Langmuir 等温线和 PSO 模型。确定了液膜扩散系数 Df(4.93 × 10-11 至 8.17 × 10-11 m2.s-1)和微粒扩散系数 Dp(1.68 × 10-11 至 2.65 × 10-11 m2.s-1),S-甲草胺吸附和 SAB 的限速步骤受液膜扩散控制。Setolachlor 在 SAB 上的吸附过程受多种机制控制,包括孔隙填充、H 键、疏水作用和 π-π EDA 相互作用。H 键是吸附 S-Metolachlor 和 SAB 的主要相互作用。研究结果表明,用金合欢锯屑生产的生物炭具有有效吸附 S-Metolachlor 除草剂的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorption characteristics of S-Metolachlor onto the sawdust biochar derived from Acacia auriculiformis.

The adsorption mechanism of S-Metolachlor in an aqueous solution by sawdust biochar derived from Acacia auriculiformis (SAB) was studied. SAB was manufactured at 500 °C for 4 h under oxygen-limited conditions and characterized for SEM, EDS, pHpzc, BET, and FTIR. The adsorption kinetics, isotherm, and diffusion studies of S-Metolachlor and SAB were further explored. Moreover, the effects of the solution pH were examined on the adsorption of S-Metolachlor by SAB. The BET analysis of SAB was achieved at 106.74 m2.g-1 and the solution pH did not significantly influence the S-Metolachlor adsorption. The adsorption data were fitted into a Langmuir isotherm and the PSO model. The film diffusion coefficient Df (4.93 × 10-11 to 8.17 × 10-11 m2.s-1) and the particle diffusion coefficient Dp (1.68 × 10-11 to 2.65 × 10-11 m2.s-1) were determined and the rate-limiting step of S-Metolachlor adsorption and SAB was governed by liquid film diffusion. The S-Metolachlor adsorption process onto SAB was controlled by multiple mechanisms, including pore filling, H-bonding, hydrophobic interaction, and π-π EDA interactions. H-bonding is the main interaction for the adsorption of S-Metolachlor and SAB. Conclusively, the study illustrates that biochar produced from Acacia auriculiformis sawdust possessed effective adsorption properties for S-Metolachlor herbicide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.00%
发文量
87
审稿时长
1 months
期刊介绍: 12 issues per year Abstracted/indexed in: Agricola; Analytical Abstracts; ASFA 3: Aquatic Pollution & Environmental Quality; BioSciences Information Service of Biological Abstracts (BIOSIS); CAB Abstracts; CAB AGBiotech News and Information; CAB Irrigation & Drainage Abstracts; CAB Soils & Fertilizers Abstracts; Chemical Abstracts Service Plus; CSA Aluminum Industry Abstracts; CSA ANTE: Abstracts in New Technology and Engineering; CSA ASFA 3 Aquatic Pollution and Environmental Quality; CSA ASSIA: Applied Social Sciences Index & Abstracts; CSA Ecology Abstracts; CSA Entomology Abstracts; CSA Environmental Engineering Abstracts; CSA Health & Safety Science Abstracts; CSA Pollution Abstracts; CSA Toxicology Abstracts; CSA Water Resource Abstracts; EBSCOhost Online Research Databases; Elsevier BIOBASE/Current Awareness in Biological Sciences; Elsevier Engineering Information: EMBASE/Excerpta Medica/ Engineering Index/COMPENDEX PLUS; Environment Abstracts; Environmental Knowledge; Food Science and Technology Abstracts; Geo Abstracts; Geobase; Food Science; Index Medicus/ MEDLINE; INIST-Pascal/ CNRS; NIOSHTIC; ISI BIOSIS Previews; Pesticides; Food Contaminants and Agricultural Wastes: Analytical Abstracts; Pollution Abstracts; PubSCIENCE; Reference Update; Research Alert; Science Citation Index Expanded (SCIE); and Water Resources Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信