掺锌羟基磷灰石作为抗癌药物 6-巯基嘌呤的 pH 值响应型给药系统。

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Marcel Jakubowski, Łukasz Majchrzycki, Aleksej Zarkov, Adam Voelkel, Mariusz Sandomierski
{"title":"掺锌羟基磷灰石作为抗癌药物 6-巯基嘌呤的 pH 值响应型给药系统。","authors":"Marcel Jakubowski,&nbsp;Łukasz Majchrzycki,&nbsp;Aleksej Zarkov,&nbsp;Adam Voelkel,&nbsp;Mariusz Sandomierski","doi":"10.1002/jbm.b.35395","DOIUrl":null,"url":null,"abstract":"<p>6-Mercaptopurine (6MP) is commonly used in the treatment of acute lymphoblastic leukemia as an important agent in maintenance therapy. Despite its therapeutic benefits, 6MP has some limitations during therapy. Taking into account the disadvantages during 6MP therapy, there is a great need to create an appropriate delivery system for this drug. 6MP contains in its structure nitrogen and sulfur atoms capable of forming coordination compounds with metal ions, for example zinc. Therefore, in this work, we prepared biocompatible hydroxyapatite (HAp) doped with zinc ions, and used it as a carrier for 6MP. Doped HAp has not been used as a carrier for this drug before. The work proved that the prepared carrier-drug system has a particle size of about 130 nm, which indicates its potential for intravenous delivery. In addition, in an acidic environment (imitating cancer cells), the carrier agglomerates allow targeted release of the drug. The drug is evenly distributed, which indicates that the doses released from it will always be comparable. The release of the drug in a neutral environment is long-lasting in controlled doses, whereas in an acidic environment it is immediate. The obtained results indicate the high potential of the material in both slow-release and cancer-targeted release of 6MP.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc-doped hydroxyapatite as a pH responsive drug delivery system for anticancer drug 6-mercaptopurine\",\"authors\":\"Marcel Jakubowski,&nbsp;Łukasz Majchrzycki,&nbsp;Aleksej Zarkov,&nbsp;Adam Voelkel,&nbsp;Mariusz Sandomierski\",\"doi\":\"10.1002/jbm.b.35395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>6-Mercaptopurine (6MP) is commonly used in the treatment of acute lymphoblastic leukemia as an important agent in maintenance therapy. Despite its therapeutic benefits, 6MP has some limitations during therapy. Taking into account the disadvantages during 6MP therapy, there is a great need to create an appropriate delivery system for this drug. 6MP contains in its structure nitrogen and sulfur atoms capable of forming coordination compounds with metal ions, for example zinc. Therefore, in this work, we prepared biocompatible hydroxyapatite (HAp) doped with zinc ions, and used it as a carrier for 6MP. Doped HAp has not been used as a carrier for this drug before. The work proved that the prepared carrier-drug system has a particle size of about 130 nm, which indicates its potential for intravenous delivery. In addition, in an acidic environment (imitating cancer cells), the carrier agglomerates allow targeted release of the drug. The drug is evenly distributed, which indicates that the doses released from it will always be comparable. The release of the drug in a neutral environment is long-lasting in controlled doses, whereas in an acidic environment it is immediate. The obtained results indicate the high potential of the material in both slow-release and cancer-targeted release of 6MP.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35395\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35395","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

6-巯基嘌呤(6MP)是治疗急性淋巴细胞白血病的常用药物,也是维持治疗的重要药物。尽管 6MP 具有治疗效果,但在治疗过程中也存在一些局限性。考虑到 6MP 在治疗过程中的缺点,我们亟需为这种药物开发一种合适的给药系统。6MP 的结构中含有氮和硫原子,能够与金属离子(如锌)形成配位化合物。因此,在这项工作中,我们制备了掺杂锌离子的生物相容性羟基磷灰石(HAp),并将其用作 6MP 的载体。掺杂的 HAp 以前从未用作这种药物的载体。研究证明,所制备的载体-药物系统的粒径约为 130 纳米,这表明它具有静脉注射的潜力。此外,在酸性环境(模仿癌细胞)中,载体团聚体可以定向释放药物。药物分布均匀,这表明其释放的剂量始终相当。在中性环境中,药物的释放在可控剂量下是持久的,而在酸性环境中则是即时的。所获得的结果表明,这种材料在 6MP 的缓释和癌症靶向释放方面都具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zinc-doped hydroxyapatite as a pH responsive drug delivery system for anticancer drug 6-mercaptopurine

6-Mercaptopurine (6MP) is commonly used in the treatment of acute lymphoblastic leukemia as an important agent in maintenance therapy. Despite its therapeutic benefits, 6MP has some limitations during therapy. Taking into account the disadvantages during 6MP therapy, there is a great need to create an appropriate delivery system for this drug. 6MP contains in its structure nitrogen and sulfur atoms capable of forming coordination compounds with metal ions, for example zinc. Therefore, in this work, we prepared biocompatible hydroxyapatite (HAp) doped with zinc ions, and used it as a carrier for 6MP. Doped HAp has not been used as a carrier for this drug before. The work proved that the prepared carrier-drug system has a particle size of about 130 nm, which indicates its potential for intravenous delivery. In addition, in an acidic environment (imitating cancer cells), the carrier agglomerates allow targeted release of the drug. The drug is evenly distributed, which indicates that the doses released from it will always be comparable. The release of the drug in a neutral environment is long-lasting in controlled doses, whereas in an acidic environment it is immediate. The obtained results indicate the high potential of the material in both slow-release and cancer-targeted release of 6MP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信