布辛斯克系统的雅可比谱近似值

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Angel Duran
{"title":"布辛斯克系统的雅可比谱近似值","authors":"Angel Duran","doi":"10.1111/sapm.12680","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the numerical approximation of initial-boundary-value problems of a three-parameter family of Bona–Smith systems, derived as a model for the propagation of surface waves under a physical Boussinesq regime. The work proposed here is focused on the corresponding problem with Dirichlet boundary conditions and its approximation in space with spectral methods based on Jacobi polynomials, which are defined from the orthogonality with respect to some weighted <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^{2}$</annotation>\n </semantics></math> inner product. Well-posedness of the problem on the corresponding weighted Sobolev spaces is first analyzed and existence and uniqueness of solution, locally in time, are proved. Then, the spectral Galerkin semidiscrete scheme and some detailed comments on its implementation are introduced. The existence of numerical solution and error estimates on those weighted Sobolev spaces are established. Finally, the choice of the time integrator to complete the full discretization takes care of different stability issues that may be relevant when approximating the semidiscrete system. Some numerical experiments illustrate the results.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Jacobi approximations for Boussinesq systems\",\"authors\":\"Angel Duran\",\"doi\":\"10.1111/sapm.12680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the numerical approximation of initial-boundary-value problems of a three-parameter family of Bona–Smith systems, derived as a model for the propagation of surface waves under a physical Boussinesq regime. The work proposed here is focused on the corresponding problem with Dirichlet boundary conditions and its approximation in space with spectral methods based on Jacobi polynomials, which are defined from the orthogonality with respect to some weighted <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^{2}$</annotation>\\n </semantics></math> inner product. Well-posedness of the problem on the corresponding weighted Sobolev spaces is first analyzed and existence and uniqueness of solution, locally in time, are proved. Then, the spectral Galerkin semidiscrete scheme and some detailed comments on its implementation are introduced. The existence of numerical solution and error estimates on those weighted Sobolev spaces are established. Finally, the choice of the time integrator to complete the full discretization takes care of different stability issues that may be relevant when approximating the semidiscrete system. Some numerical experiments illustrate the results.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及博纳-史密斯系统三参数族的初始边界值问题的数值近似,该系统是作为物理布辛斯克机制下表面波传播的模型而衍生的。本文提出的工作重点是具有 Dirichlet 边界条件的相应问题,以及用基于雅可比多项式的谱方法在空间对其进行逼近,雅可比多项式是由关于某些加权内积的正交性定义的。首先分析了问题在相应的加权 Sobolev 空间上的良好求解性,并证明了解的存在性和唯一性(局部时间)。然后,介绍了谱 Galerkin 半离散方案及其实施的一些详细评论。在这些加权 Sobolev 空间上建立了数值解的存在性和误差估计。最后,通过选择时间积分器来完成完全离散化,解决了在近似半离散系统时可能涉及的不同稳定性问题。一些数值实验说明了这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Jacobi approximations for Boussinesq systems

This paper is concerned with the numerical approximation of initial-boundary-value problems of a three-parameter family of Bona–Smith systems, derived as a model for the propagation of surface waves under a physical Boussinesq regime. The work proposed here is focused on the corresponding problem with Dirichlet boundary conditions and its approximation in space with spectral methods based on Jacobi polynomials, which are defined from the orthogonality with respect to some weighted L 2 $L^{2}$ inner product. Well-posedness of the problem on the corresponding weighted Sobolev spaces is first analyzed and existence and uniqueness of solution, locally in time, are proved. Then, the spectral Galerkin semidiscrete scheme and some detailed comments on its implementation are introduced. The existence of numerical solution and error estimates on those weighted Sobolev spaces are established. Finally, the choice of the time integrator to complete the full discretization takes care of different stability issues that may be relevant when approximating the semidiscrete system. Some numerical experiments illustrate the results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信