有界非光滑域上的分数贝索夫空间和哈代不等式

IF 1 3区 数学 Q1 MATHEMATICS
Jun Cao, Yongyang Jin, Zhuonan Yu, Qishun Zhang
{"title":"有界非光滑域上的分数贝索夫空间和哈代不等式","authors":"Jun Cao,&nbsp;Yongyang Jin,&nbsp;Zhuonan Yu,&nbsp;Qishun Zhang","doi":"10.1007/s10231-024-01430-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Omega \\)</span> be a bounded non-smooth domain in <span>\\(\\mathbb {R}^n\\)</span> that satisfies the measure density condition. In this paper, the authors study the interrelations of three basic types of Besov spaces <span>\\(B_{p,q}^s(\\Omega )\\)</span>, <span>\\(\\mathring{B}_{p,q}^s(\\Omega )\\)</span> and <span>\\(\\widetilde{B}_{p,q}^s(\\Omega )\\)</span> on <span>\\(\\Omega \\)</span>, which are defined, respectively, via the restriction, completion and supporting conditions with <span>\\(p,q\\in [1,\\infty )\\)</span> and <span>\\(s\\in (0,1)\\)</span>. The authors prove that <span>\\(B_{p,q}^s(\\Omega )=\\mathring{B}_{p,q}^s(\\Omega )=\\widetilde{B}_{p,q}^s(\\Omega )\\)</span>, if <span>\\(\\Omega \\)</span> supports a fractional Besov–Hardy inequality, where the latter is proved under certain conditions on fractional Besov capacity or Aikawa’s dimension of the boundary of <span>\\(\\Omega \\)</span>.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Besov spaces and Hardy inequalities on bounded non-smooth domains\",\"authors\":\"Jun Cao,&nbsp;Yongyang Jin,&nbsp;Zhuonan Yu,&nbsp;Qishun Zhang\",\"doi\":\"10.1007/s10231-024-01430-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\Omega \\\\)</span> be a bounded non-smooth domain in <span>\\\\(\\\\mathbb {R}^n\\\\)</span> that satisfies the measure density condition. In this paper, the authors study the interrelations of three basic types of Besov spaces <span>\\\\(B_{p,q}^s(\\\\Omega )\\\\)</span>, <span>\\\\(\\\\mathring{B}_{p,q}^s(\\\\Omega )\\\\)</span> and <span>\\\\(\\\\widetilde{B}_{p,q}^s(\\\\Omega )\\\\)</span> on <span>\\\\(\\\\Omega \\\\)</span>, which are defined, respectively, via the restriction, completion and supporting conditions with <span>\\\\(p,q\\\\in [1,\\\\infty )\\\\)</span> and <span>\\\\(s\\\\in (0,1)\\\\)</span>. The authors prove that <span>\\\\(B_{p,q}^s(\\\\Omega )=\\\\mathring{B}_{p,q}^s(\\\\Omega )=\\\\widetilde{B}_{p,q}^s(\\\\Omega )\\\\)</span>, if <span>\\\\(\\\\Omega \\\\)</span> supports a fractional Besov–Hardy inequality, where the latter is proved under certain conditions on fractional Besov capacity or Aikawa’s dimension of the boundary of <span>\\\\(\\\\Omega \\\\)</span>.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01430-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01430-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\Omega \) 是 \(\mathbb {R}^n\) 中满足度量密度条件的有界非光滑域。在本文中,作者研究了三种基本贝索夫空间的相互关系:\(B_{p,q}^s(\Omega )\)、\(mathring{B}_{p,q}^s(\Omega )\)和\(widetilde{B}_{p、q}^s(\Omega )\) 上,它们分别是通过限制条件、完成条件和支持条件与 (p,q\in [1,\infty )\) 和 (s\in (0,1)\) 来定义的。作者证明,如果 \(\Omega \) 支持分数贝索夫-哈代不等式,则 \(B_{p,q}^s(\Omega )=\mathring{B}_{p,q}^s(\Omega )=\widetilde{B}_{p,q}^s(\Omega )\) 支持分数贝索夫-哈代不等式、其中后者是在\(\Omega \)边界的分数贝索夫容量或艾川维度的某些条件下证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Besov spaces and Hardy inequalities on bounded non-smooth domains

Let \(\Omega \) be a bounded non-smooth domain in \(\mathbb {R}^n\) that satisfies the measure density condition. In this paper, the authors study the interrelations of three basic types of Besov spaces \(B_{p,q}^s(\Omega )\), \(\mathring{B}_{p,q}^s(\Omega )\) and \(\widetilde{B}_{p,q}^s(\Omega )\) on \(\Omega \), which are defined, respectively, via the restriction, completion and supporting conditions with \(p,q\in [1,\infty )\) and \(s\in (0,1)\). The authors prove that \(B_{p,q}^s(\Omega )=\mathring{B}_{p,q}^s(\Omega )=\widetilde{B}_{p,q}^s(\Omega )\), if \(\Omega \) supports a fractional Besov–Hardy inequality, where the latter is proved under certain conditions on fractional Besov capacity or Aikawa’s dimension of the boundary of \(\Omega \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信