{"title":"构象空间的分形性质在蛋白质亚扩散中的主要作用","authors":"Luca Maggi, Modesto Orozco","doi":"10.1103/physreve.109.034402","DOIUrl":null,"url":null,"abstract":"Protein dynamics involves a myriad of mechanical movements happening at different time and space scales, which make it highly complex. One of the less understood features of protein dynamics is subdiffusivity, defined as sublinear dependence between displacement and time. Here, we use all-atoms molecular dynamics (MD) simulations to directly interrogate an already well-established theory and demonstrate that subdiffusivity arises from the fractal nature of the network of metastable conformations over which the dynamics, thought of as a diffusion process, takes place.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"32 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Main role of fractal-like nature of conformational space in subdiffusion in proteins\",\"authors\":\"Luca Maggi, Modesto Orozco\",\"doi\":\"10.1103/physreve.109.034402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein dynamics involves a myriad of mechanical movements happening at different time and space scales, which make it highly complex. One of the less understood features of protein dynamics is subdiffusivity, defined as sublinear dependence between displacement and time. Here, we use all-atoms molecular dynamics (MD) simulations to directly interrogate an already well-established theory and demonstrate that subdiffusivity arises from the fractal nature of the network of metastable conformations over which the dynamics, thought of as a diffusion process, takes place.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.109.034402\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.109.034402","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Main role of fractal-like nature of conformational space in subdiffusion in proteins
Protein dynamics involves a myriad of mechanical movements happening at different time and space scales, which make it highly complex. One of the less understood features of protein dynamics is subdiffusivity, defined as sublinear dependence between displacement and time. Here, we use all-atoms molecular dynamics (MD) simulations to directly interrogate an already well-established theory and demonstrate that subdiffusivity arises from the fractal nature of the network of metastable conformations over which the dynamics, thought of as a diffusion process, takes place.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.