{"title":"等离子处理对天然纤维和合成纤维生物降解的影响","authors":"Marzhan Nyssanbek, Natalya Kuzina, Valery Kondrashchenko, Abdugani Azimov","doi":"10.1038/s41529-024-00437-x","DOIUrl":null,"url":null,"abstract":"This study investigates the application of plasma treatment as a means to enhance biodegradation and modify the structural characteristics of fibrous composites. The methodological component of the study includes the selection of the research object; production of composites; low-temperature plasma treatment, and treatment of biodegradability and mechanical strength of samples. The strengthening of fibers with cellulose leads to a significant improvement in mechanical strength. Such an indicator as mechanical strength increases from 18 to 21 MPa. Treatment of natural fibers with low-temperature plasma led to an increase in mechanical strength from 18 to 25 MPa. Treating reinforced fibers with low-temperature plasma currently results in an even greater enhancement in mechanical strength, increasing from 18 to 29 MPa.The electron microscopy of samples reveals some differences in cell wall microfibrils between plasma-treated and non-treated samples. The non-treated fibres are found to have chips and voids. Meantime, the plasma-treated fibres show structural changes in certain regions which resemble wood charring. Through a comprehensive analysis, this research underscores the substantial impact of plasma treatment on the degradation kinetics and morphological features of cellulose-based composites. The results reveal distinct alterations in the composition and behavior of plasma-treated fibres, signifying a shift towards enhanced biodegradability. The natural fibres examined in this study contained 28–30% lignin, whereas the composites exhibited a lower lignin content of 21–23%. These findings corroborate the inference that plasma treatment induces significant changes in fibre structure, accelerating the biodegradation process by 7 days.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00437-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of plasma treatment on biodegradation of natural and synthetic fibers\",\"authors\":\"Marzhan Nyssanbek, Natalya Kuzina, Valery Kondrashchenko, Abdugani Azimov\",\"doi\":\"10.1038/s41529-024-00437-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the application of plasma treatment as a means to enhance biodegradation and modify the structural characteristics of fibrous composites. The methodological component of the study includes the selection of the research object; production of composites; low-temperature plasma treatment, and treatment of biodegradability and mechanical strength of samples. The strengthening of fibers with cellulose leads to a significant improvement in mechanical strength. Such an indicator as mechanical strength increases from 18 to 21 MPa. Treatment of natural fibers with low-temperature plasma led to an increase in mechanical strength from 18 to 25 MPa. Treating reinforced fibers with low-temperature plasma currently results in an even greater enhancement in mechanical strength, increasing from 18 to 29 MPa.The electron microscopy of samples reveals some differences in cell wall microfibrils between plasma-treated and non-treated samples. The non-treated fibres are found to have chips and voids. Meantime, the plasma-treated fibres show structural changes in certain regions which resemble wood charring. Through a comprehensive analysis, this research underscores the substantial impact of plasma treatment on the degradation kinetics and morphological features of cellulose-based composites. The results reveal distinct alterations in the composition and behavior of plasma-treated fibres, signifying a shift towards enhanced biodegradability. The natural fibres examined in this study contained 28–30% lignin, whereas the composites exhibited a lower lignin content of 21–23%. These findings corroborate the inference that plasma treatment induces significant changes in fibre structure, accelerating the biodegradation process by 7 days.\",\"PeriodicalId\":19270,\"journal\":{\"name\":\"npj Materials Degradation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41529-024-00437-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Materials Degradation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41529-024-00437-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00437-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of plasma treatment on biodegradation of natural and synthetic fibers
This study investigates the application of plasma treatment as a means to enhance biodegradation and modify the structural characteristics of fibrous composites. The methodological component of the study includes the selection of the research object; production of composites; low-temperature plasma treatment, and treatment of biodegradability and mechanical strength of samples. The strengthening of fibers with cellulose leads to a significant improvement in mechanical strength. Such an indicator as mechanical strength increases from 18 to 21 MPa. Treatment of natural fibers with low-temperature plasma led to an increase in mechanical strength from 18 to 25 MPa. Treating reinforced fibers with low-temperature plasma currently results in an even greater enhancement in mechanical strength, increasing from 18 to 29 MPa.The electron microscopy of samples reveals some differences in cell wall microfibrils between plasma-treated and non-treated samples. The non-treated fibres are found to have chips and voids. Meantime, the plasma-treated fibres show structural changes in certain regions which resemble wood charring. Through a comprehensive analysis, this research underscores the substantial impact of plasma treatment on the degradation kinetics and morphological features of cellulose-based composites. The results reveal distinct alterations in the composition and behavior of plasma-treated fibres, signifying a shift towards enhanced biodegradability. The natural fibres examined in this study contained 28–30% lignin, whereas the composites exhibited a lower lignin content of 21–23%. These findings corroborate the inference that plasma treatment induces significant changes in fibre structure, accelerating the biodegradation process by 7 days.
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies