Ilya Kondratyev, Veronika Ivanova, Suren Fldzhyan, Artem Argenchiev, Nikita Kostyuchenko, Sergey Zhuravitskii, Nikolay Skryabin, Ivan Dyakonov, Mikhail Saygin, Stanislav Straupe, Alexander Korneev, and Sergei Kulik
{"title":"利用飞秒激光写入技术制造大规模容错可编程干涉仪","authors":"Ilya Kondratyev, Veronika Ivanova, Suren Fldzhyan, Artem Argenchiev, Nikita Kostyuchenko, Sergey Zhuravitskii, Nikolay Skryabin, Ivan Dyakonov, Mikhail Saygin, Stanislav Straupe, Alexander Korneev, and Sergei Kulik","doi":"10.1364/prj.504588","DOIUrl":null,"url":null,"abstract":"We introduce a programmable eight-port interferometer with the recently proposed error-tolerant architecture capable of performing a broad class of transformations. The interferometer has been fabricated with femtosecond laser writing, and it is the largest programmable interferometer of this kind to date. We have demonstrated its advantageous error tolerance by showing an operation in a broad wavelength range from 920 to 980 nm, which is particularly relevant for quantum photonics due to efficient photon sources existing in this wavelength range. Our work highlights the importance of developing novel architectures of programmable photonics for information processing.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"16 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale error-tolerant programmable interferometer fabricated by femtosecond laser writing\",\"authors\":\"Ilya Kondratyev, Veronika Ivanova, Suren Fldzhyan, Artem Argenchiev, Nikita Kostyuchenko, Sergey Zhuravitskii, Nikolay Skryabin, Ivan Dyakonov, Mikhail Saygin, Stanislav Straupe, Alexander Korneev, and Sergei Kulik\",\"doi\":\"10.1364/prj.504588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a programmable eight-port interferometer with the recently proposed error-tolerant architecture capable of performing a broad class of transformations. The interferometer has been fabricated with femtosecond laser writing, and it is the largest programmable interferometer of this kind to date. We have demonstrated its advantageous error tolerance by showing an operation in a broad wavelength range from 920 to 980 nm, which is particularly relevant for quantum photonics due to efficient photon sources existing in this wavelength range. Our work highlights the importance of developing novel architectures of programmable photonics for information processing.\",\"PeriodicalId\":20048,\"journal\":{\"name\":\"Photonics Research\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/prj.504588\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/prj.504588","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Large-scale error-tolerant programmable interferometer fabricated by femtosecond laser writing
We introduce a programmable eight-port interferometer with the recently proposed error-tolerant architecture capable of performing a broad class of transformations. The interferometer has been fabricated with femtosecond laser writing, and it is the largest programmable interferometer of this kind to date. We have demonstrated its advantageous error tolerance by showing an operation in a broad wavelength range from 920 to 980 nm, which is particularly relevant for quantum photonics due to efficient photon sources existing in this wavelength range. Our work highlights the importance of developing novel architectures of programmable photonics for information processing.
期刊介绍:
Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.