{"title":"设计对入射平面波不可见的完美导电物体","authors":"Johan Helsing;Shidong Jiang;Anders Karlsson","doi":"10.1109/JMMCT.2024.3364084","DOIUrl":null,"url":null,"abstract":"This work concerns the design of perfectly conducting objects that are invisible to an incident transverse magnetic plane wave. The object in question is a finite planar waveguide with a finite periodic array of barriers. By optimizing this array, the amplitude of the scattered field is reduced to less than \n<inline-formula><tex-math>$10^{-9}$</tex-math></inline-formula>\n times the amplitude of the incident plane wave everywhere outside the waveguide. To accurately evaluate such minute amplitudes, we employ a recently developed boundary integral equation technique, adapted for objects whose boundaries have endpoints, corners, and branch points.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"104-112"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Perfectly Conducting Objects That Are Invisible to an Incident Plane Wave\",\"authors\":\"Johan Helsing;Shidong Jiang;Anders Karlsson\",\"doi\":\"10.1109/JMMCT.2024.3364084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work concerns the design of perfectly conducting objects that are invisible to an incident transverse magnetic plane wave. The object in question is a finite planar waveguide with a finite periodic array of barriers. By optimizing this array, the amplitude of the scattered field is reduced to less than \\n<inline-formula><tex-math>$10^{-9}$</tex-math></inline-formula>\\n times the amplitude of the incident plane wave everywhere outside the waveguide. To accurately evaluate such minute amplitudes, we employ a recently developed boundary integral equation technique, adapted for objects whose boundaries have endpoints, corners, and branch points.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"9 \",\"pages\":\"104-112\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10427992/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10427992/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of Perfectly Conducting Objects That Are Invisible to an Incident Plane Wave
This work concerns the design of perfectly conducting objects that are invisible to an incident transverse magnetic plane wave. The object in question is a finite planar waveguide with a finite periodic array of barriers. By optimizing this array, the amplitude of the scattered field is reduced to less than
$10^{-9}$
times the amplitude of the incident plane wave everywhere outside the waveguide. To accurately evaluate such minute amplitudes, we employ a recently developed boundary integral equation technique, adapted for objects whose boundaries have endpoints, corners, and branch points.