{"title":"由循环生成的对称群上正态 Cayley 图的第二大特征值","authors":"Yuxuan Li, Binzhou Xia, Sanming Zhou","doi":"10.1016/j.jcta.2024.105885","DOIUrl":null,"url":null,"abstract":"<div><p>We study the normal Cayley graphs <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>)</mo></math></span> on the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><mi>I</mi><mo>⊆</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> and <span><math><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo></math></span> is the set of all cycles in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with length in <em>I</em>. We prove that the strictly second largest eigenvalue of <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>)</mo></math></span> can only be achieved by at most four irreducible representations of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and we determine further the multiplicity of this eigenvalue in several special cases. As a corollary, in the case when <em>I</em> contains neither <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> nor <em>n</em> we know exactly when <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>)</mo></math></span> has the Aldous property, namely the strictly second largest eigenvalue is attained by the standard representation of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and we obtain that <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>)</mo></math></span> does not have the Aldous property whenever <span><math><mi>n</mi><mo>∈</mo><mi>I</mi></math></span>. As another corollary of our main results, we prove a recent conjecture on the second largest eigenvalue of <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><mi>k</mi><mo>}</mo><mo>)</mo><mo>)</mo></math></span> where <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105885"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000244/pdfft?md5=f945a709cc7931a6640e76d02ea647ea&pid=1-s2.0-S0097316524000244-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The second largest eigenvalue of normal Cayley graphs on symmetric groups generated by cycles\",\"authors\":\"Yuxuan Li, Binzhou Xia, Sanming Zhou\",\"doi\":\"10.1016/j.jcta.2024.105885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the normal Cayley graphs <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>)</mo></math></span> on the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><mi>I</mi><mo>⊆</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> and <span><math><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo></math></span> is the set of all cycles in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with length in <em>I</em>. We prove that the strictly second largest eigenvalue of <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>)</mo></math></span> can only be achieved by at most four irreducible representations of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and we determine further the multiplicity of this eigenvalue in several special cases. As a corollary, in the case when <em>I</em> contains neither <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> nor <em>n</em> we know exactly when <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>)</mo></math></span> has the Aldous property, namely the strictly second largest eigenvalue is attained by the standard representation of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and we obtain that <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>)</mo></math></span> does not have the Aldous property whenever <span><math><mi>n</mi><mo>∈</mo><mi>I</mi></math></span>. As another corollary of our main results, we prove a recent conjecture on the second largest eigenvalue of <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><mi>k</mi><mo>}</mo><mo>)</mo><mo>)</mo></math></span> where <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>2</mn></math></span>.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"206 \",\"pages\":\"Article 105885\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000244/pdfft?md5=f945a709cc7931a6640e76d02ea647ea&pid=1-s2.0-S0097316524000244-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000244\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000244","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了对称群 Sn 上的正则 Cayley 图 Cay(Sn,C(n,I)),其中 I⊆{2,3,...,n},C(n,I) 是 Sn 中长度在 I 中的所有循环的集合。我们证明了 Cay(Sn,C(n,I)) 的严格第二大特征值最多只能由 Sn 的四个不可还原表示来实现,并进一步确定了该特征值在几种特殊情况下的多重性。作为一个推论,在 I 既不包含 n-1 也不包含 n 的情况下,我们可以准确地知道 Cay(Sn,C(n,I)) 何时具有阿尔多斯性质,即严格意义上的第二大特征值是由 Sn 的标准表示达到的,并且我们得到,只要 n∈I ,Cay(Sn,C(n,I)) 就不具有阿尔多斯性质。作为我们主要结果的另一个推论,我们证明了最近关于 Cay(Sn,C(n,{k}))第二大特征值的猜想,其中 2≤k≤n-2.
The second largest eigenvalue of normal Cayley graphs on symmetric groups generated by cycles
We study the normal Cayley graphs on the symmetric group , where and is the set of all cycles in with length in I. We prove that the strictly second largest eigenvalue of can only be achieved by at most four irreducible representations of , and we determine further the multiplicity of this eigenvalue in several special cases. As a corollary, in the case when I contains neither nor n we know exactly when has the Aldous property, namely the strictly second largest eigenvalue is attained by the standard representation of , and we obtain that does not have the Aldous property whenever . As another corollary of our main results, we prove a recent conjecture on the second largest eigenvalue of where .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.