具有交联网络的新兴铁基多孔金属聚合物材料用于分离水环境中的超痕量砷并利用人工神经网络进行模拟

IF 5.4 Q2 ENGINEERING, ENVIRONMENTAL
Vipin C. Joshi , Anil R. Gupta , Manikavasagam Karthik , Saroj Sharma
{"title":"具有交联网络的新兴铁基多孔金属聚合物材料用于分离水环境中的超痕量砷并利用人工神经网络进行模拟","authors":"Vipin C. Joshi ,&nbsp;Anil R. Gupta ,&nbsp;Manikavasagam Karthik ,&nbsp;Saroj Sharma","doi":"10.1016/j.hazadv.2024.100417","DOIUrl":null,"url":null,"abstract":"<div><p>Numerous health problems caused by the aquatic environment's extreme arsenic poisoning influence millions of people, and in the case of prolong indigestion of arsenic containing drinking water, can be potentially fatal. Herein, a new porous polymeric network knitted with integrated iron moiety i.e., poly(ferric tri methacrylate) (pFeM) is fabricated via the suspension polymerization technique. The relative reactants i.e., monomer, crosslinker, and porogen were varied to get a highly efficient pFeM adsorbent for arsenic. The prepared pFeM revealed a significant affinity for arsenic owing to a cohesive iron moiety in the polymeric chain. The prepared adsorbent was characterized by instrumental techniques such as, SEM, XRD, FTIR, BET, and XPS. The pFeM has exhibited high adsorption capacities (q<sub>e max exp</sub>) of 41.39 mg g<sup>−1</sup> for As(V) and 37.35 mg g<sup>−1</sup> for As(III), which is close to the adsorption capacities (q<sub>e max theo</sub>) of 45.10 mg g<sup>−1</sup> for As(V) and 40.88 mg g<sup>−1</sup> for As(III) achieved by Langmuir adsorption model. The high adsorption capacities of pFeM might be owing to its unique architecture of integrated iron with porous texture surface area (SA: 197 m<sup>2</sup> g<sup>−1</sup>) and porosity (Pore size: 0.93–2.36 µm). The pFeM exhibited high arsenic adsorption capacity (&gt;94 % for both forms of arsenic) in the neutral water pH range of 6.0 to 8.0. The phosphate (PO<sub>4</sub><sup>3−</sup>), and bicarbonate (HCO<sub>3</sub><sup>−</sup>) ions negatively affect the adsorption of arsenic, as demonstrated by the effect of interfering ions in water. The pseudo-second-order kinetic model is best fitted with a high correlation coefficient (R<sup>2</sup>) of 0.9918 and 0.9789 for As(V) and As(III), respectively. The artificial neural network (ANN) was trained and validated using a three-layer back propagation network with the ideal structure of 4–10–1. The values of correlation coefficients (<em>R</em> &gt; 0.99) reveal the high accuracy of the ANN model.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000184/pdfft?md5=f6908ab27e93f771649b37867e86f8e8&pid=1-s2.0-S2772416624000184-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Emerging iron based porous metallopolymeric material with cross-linked networks for the separation of ultra-trace arsenic from aqueous environment and simulation with artificial neural network\",\"authors\":\"Vipin C. Joshi ,&nbsp;Anil R. Gupta ,&nbsp;Manikavasagam Karthik ,&nbsp;Saroj Sharma\",\"doi\":\"10.1016/j.hazadv.2024.100417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Numerous health problems caused by the aquatic environment's extreme arsenic poisoning influence millions of people, and in the case of prolong indigestion of arsenic containing drinking water, can be potentially fatal. Herein, a new porous polymeric network knitted with integrated iron moiety i.e., poly(ferric tri methacrylate) (pFeM) is fabricated via the suspension polymerization technique. The relative reactants i.e., monomer, crosslinker, and porogen were varied to get a highly efficient pFeM adsorbent for arsenic. The prepared pFeM revealed a significant affinity for arsenic owing to a cohesive iron moiety in the polymeric chain. The prepared adsorbent was characterized by instrumental techniques such as, SEM, XRD, FTIR, BET, and XPS. The pFeM has exhibited high adsorption capacities (q<sub>e max exp</sub>) of 41.39 mg g<sup>−1</sup> for As(V) and 37.35 mg g<sup>−1</sup> for As(III), which is close to the adsorption capacities (q<sub>e max theo</sub>) of 45.10 mg g<sup>−1</sup> for As(V) and 40.88 mg g<sup>−1</sup> for As(III) achieved by Langmuir adsorption model. The high adsorption capacities of pFeM might be owing to its unique architecture of integrated iron with porous texture surface area (SA: 197 m<sup>2</sup> g<sup>−1</sup>) and porosity (Pore size: 0.93–2.36 µm). The pFeM exhibited high arsenic adsorption capacity (&gt;94 % for both forms of arsenic) in the neutral water pH range of 6.0 to 8.0. The phosphate (PO<sub>4</sub><sup>3−</sup>), and bicarbonate (HCO<sub>3</sub><sup>−</sup>) ions negatively affect the adsorption of arsenic, as demonstrated by the effect of interfering ions in water. The pseudo-second-order kinetic model is best fitted with a high correlation coefficient (R<sup>2</sup>) of 0.9918 and 0.9789 for As(V) and As(III), respectively. The artificial neural network (ANN) was trained and validated using a three-layer back propagation network with the ideal structure of 4–10–1. The values of correlation coefficients (<em>R</em> &gt; 0.99) reveal the high accuracy of the ANN model.</p></div>\",\"PeriodicalId\":73763,\"journal\":{\"name\":\"Journal of hazardous materials advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772416624000184/pdfft?md5=f6908ab27e93f771649b37867e86f8e8&pid=1-s2.0-S2772416624000184-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772416624000184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772416624000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

水生环境中的砷中毒对数百万人造成了严重的健康问题,如果长期饮用含砷的饮用水,可能会导致死亡。在此,我们通过悬浮聚合技术制造了一种集成了铁分子的新型多孔聚合物网络,即聚(甲基丙烯酸三铁)(pFeM)。通过改变相对反应物(即单体、交联剂和致孔剂)来获得高效的 pFeM 砷吸附剂。所制备的 pFeM 对砷具有显著的亲和力,这是因为聚合物链中的铁分子具有内聚性。所制备的吸附剂通过 SEM、XRD、FTIR、BET 和 XPS 等仪器技术进行了表征。pFeM 对 As(V) 和 As(III) 的高吸附容量(qe max exp)分别为 41.39 mg g-1 和 37.35 mg g-1,与 Langmuir 吸附模型得出的吸附容量(qe max theo)(As(V) 45.10 mg g-1,As(III) 40.88 mg g-1)相近。pFeM 的高吸附容量可能是由于其具有多孔质地表面积(SA:197 m2 g-1)和孔隙率(孔径:0.93-2.36 µm)的集成铁的独特结构。在 6.0 至 8.0 的中性水 pH 值范围内,pFeM 具有很高的砷吸附能力(对两种形式的砷而言均为 94%)。磷酸盐(PO43-)和碳酸氢盐(HCO3-)离子对砷的吸附有负面影响,这从水中干扰离子的影响中可以看出。伪二阶动力学模型拟合效果最佳,对 As(V) 和 As(III) 的相关系数(R2)分别高达 0.9918 和 0.9789。使用理想结构为 4-10-1 的三层反向传播网络对人工神经网络(ANN)进行了训练和验证。相关系数 (R > 0.99) 的值显示了人工神经网络模型的高准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Emerging iron based porous metallopolymeric material with cross-linked networks for the separation of ultra-trace arsenic from aqueous environment and simulation with artificial neural network

Emerging iron based porous metallopolymeric material with cross-linked networks for the separation of ultra-trace arsenic from aqueous environment and simulation with artificial neural network

Numerous health problems caused by the aquatic environment's extreme arsenic poisoning influence millions of people, and in the case of prolong indigestion of arsenic containing drinking water, can be potentially fatal. Herein, a new porous polymeric network knitted with integrated iron moiety i.e., poly(ferric tri methacrylate) (pFeM) is fabricated via the suspension polymerization technique. The relative reactants i.e., monomer, crosslinker, and porogen were varied to get a highly efficient pFeM adsorbent for arsenic. The prepared pFeM revealed a significant affinity for arsenic owing to a cohesive iron moiety in the polymeric chain. The prepared adsorbent was characterized by instrumental techniques such as, SEM, XRD, FTIR, BET, and XPS. The pFeM has exhibited high adsorption capacities (qe max exp) of 41.39 mg g−1 for As(V) and 37.35 mg g−1 for As(III), which is close to the adsorption capacities (qe max theo) of 45.10 mg g−1 for As(V) and 40.88 mg g−1 for As(III) achieved by Langmuir adsorption model. The high adsorption capacities of pFeM might be owing to its unique architecture of integrated iron with porous texture surface area (SA: 197 m2 g−1) and porosity (Pore size: 0.93–2.36 µm). The pFeM exhibited high arsenic adsorption capacity (>94 % for both forms of arsenic) in the neutral water pH range of 6.0 to 8.0. The phosphate (PO43−), and bicarbonate (HCO3) ions negatively affect the adsorption of arsenic, as demonstrated by the effect of interfering ions in water. The pseudo-second-order kinetic model is best fitted with a high correlation coefficient (R2) of 0.9918 and 0.9789 for As(V) and As(III), respectively. The artificial neural network (ANN) was trained and validated using a three-layer back propagation network with the ideal structure of 4–10–1. The values of correlation coefficients (R > 0.99) reveal the high accuracy of the ANN model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of hazardous materials advances
Journal of hazardous materials advances Environmental Engineering
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
50 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信