{"title":"Lumos maxima - 荧光团如何抵御光漂白?","authors":"Yuan Zhang , Jing Ling , Tianyan Liu , Zhixing Chen","doi":"10.1016/j.cbpa.2024.102439","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorescent dyes synergize with advanced microscopy for researchers to investigate the location and dynamic processes of biomacromolecules with high spatial and temporal resolution. However, the instability of fluorescent dyes, including photobleaching and photoconversion, represent fundamental limits for super-resolution and time-lapse imaging. In this review, we discuss the latest advances in improving the photostability of fluorescent dyes. We summarize the primary photobleaching processes of cyanine and rhodamine dyes and highlight a range of strategies developed in recent years to strengthen these fluorophores. Additionally, we discuss the influence of protein microenvironments and labeling methods on the photostability of fluorophores. We aim to inspire next-generation robust and bright fluorophores that ultimately enable the routine practice of time-lapse super-resolution imaging of live cells.</p></div>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lumos maxima – How robust fluorophores resist photobleaching?\",\"authors\":\"Yuan Zhang , Jing Ling , Tianyan Liu , Zhixing Chen\",\"doi\":\"10.1016/j.cbpa.2024.102439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fluorescent dyes synergize with advanced microscopy for researchers to investigate the location and dynamic processes of biomacromolecules with high spatial and temporal resolution. However, the instability of fluorescent dyes, including photobleaching and photoconversion, represent fundamental limits for super-resolution and time-lapse imaging. In this review, we discuss the latest advances in improving the photostability of fluorescent dyes. We summarize the primary photobleaching processes of cyanine and rhodamine dyes and highlight a range of strategies developed in recent years to strengthen these fluorophores. Additionally, we discuss the influence of protein microenvironments and labeling methods on the photostability of fluorophores. We aim to inspire next-generation robust and bright fluorophores that ultimately enable the routine practice of time-lapse super-resolution imaging of live cells.</p></div>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000152\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000152","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Lumos maxima – How robust fluorophores resist photobleaching?
Fluorescent dyes synergize with advanced microscopy for researchers to investigate the location and dynamic processes of biomacromolecules with high spatial and temporal resolution. However, the instability of fluorescent dyes, including photobleaching and photoconversion, represent fundamental limits for super-resolution and time-lapse imaging. In this review, we discuss the latest advances in improving the photostability of fluorescent dyes. We summarize the primary photobleaching processes of cyanine and rhodamine dyes and highlight a range of strategies developed in recent years to strengthen these fluorophores. Additionally, we discuss the influence of protein microenvironments and labeling methods on the photostability of fluorophores. We aim to inspire next-generation robust and bright fluorophores that ultimately enable the routine practice of time-lapse super-resolution imaging of live cells.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.