Elizabeth S Lavin, Erica R Feldman, Scott M Soprano, Elizabeth S Moore
{"title":"静脉穿刺部位对 C57BL/6 小鼠滴血量的影响","authors":"Elizabeth S Lavin, Erica R Feldman, Scott M Soprano, Elizabeth S Moore","doi":"10.30802/AALAS-JAALAS-23-000083","DOIUrl":null,"url":null,"abstract":"<p><p>Many experiments require the collection of serial blood samples from mice. However, the size of mice limits the volume of blood that can be safely collected as a survival procedure. In IACUC protocols, investigators may report the amount of blood they collect from mice as a number of drops. Many institutions, including ours, use an anecdotal conversion factor (1drop of mouse blood = 25μL) to ensure that blood-collection volumes are compliant with institutional guidelines. To our knowledge, previous work has not experimentally determined the volume of a drop of mouse blood. In this 10-wk crossover experiment, 2 phlebotomists bled 30 C57BL/6J mice from 3 sites (facial, saphenous, and tail) using one or 2 different needle gauge sizes per site. Male and female mice were weighed weekly and divided among 5 groups (n = 6): left and right tail vein, left and right saphenous vein, and facial vein. A single blood drop from each site was weighed, and the volume of each drop was calculated using the average blood density determined from 8 mice terminally bled at the end of the study. Venipuncture site and side significantly influenced blood-drop weight and thus calculated volume. Facial vein puncture produced the largest drop volume (mean: 21.7μL), followed by the saphenous vein (mean: 9.97μL) and tail vein (mean: 4.96μL). Collection from the facial vein was associated with more hemorrhage and morbidity. Left-sided venipuncture was associated with slightly larger-volume blood drops, though the effect size of side was small. The results of this study may be useful in more accurately estimating blood loss via conversion of drops to volume. Our data indicate that blood collection from saphenous and tail veins minimizes blood loss relative to facial vein puncture and may optimize both serial collection of small-volume blood samples and animal welfare.</p>","PeriodicalId":94111,"journal":{"name":"Journal of the American Association for Laboratory Animal Science : JAALAS","volume":" ","pages":"325-332"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193429/pdf/","citationCount":"0","resultStr":"{\"title\":\"Venipuncture Site Influences Blood-drop Volume in C57BL/6 Mice.\",\"authors\":\"Elizabeth S Lavin, Erica R Feldman, Scott M Soprano, Elizabeth S Moore\",\"doi\":\"10.30802/AALAS-JAALAS-23-000083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many experiments require the collection of serial blood samples from mice. However, the size of mice limits the volume of blood that can be safely collected as a survival procedure. In IACUC protocols, investigators may report the amount of blood they collect from mice as a number of drops. Many institutions, including ours, use an anecdotal conversion factor (1drop of mouse blood = 25μL) to ensure that blood-collection volumes are compliant with institutional guidelines. To our knowledge, previous work has not experimentally determined the volume of a drop of mouse blood. In this 10-wk crossover experiment, 2 phlebotomists bled 30 C57BL/6J mice from 3 sites (facial, saphenous, and tail) using one or 2 different needle gauge sizes per site. Male and female mice were weighed weekly and divided among 5 groups (n = 6): left and right tail vein, left and right saphenous vein, and facial vein. A single blood drop from each site was weighed, and the volume of each drop was calculated using the average blood density determined from 8 mice terminally bled at the end of the study. Venipuncture site and side significantly influenced blood-drop weight and thus calculated volume. Facial vein puncture produced the largest drop volume (mean: 21.7μL), followed by the saphenous vein (mean: 9.97μL) and tail vein (mean: 4.96μL). Collection from the facial vein was associated with more hemorrhage and morbidity. Left-sided venipuncture was associated with slightly larger-volume blood drops, though the effect size of side was small. The results of this study may be useful in more accurately estimating blood loss via conversion of drops to volume. Our data indicate that blood collection from saphenous and tail veins minimizes blood loss relative to facial vein puncture and may optimize both serial collection of small-volume blood samples and animal welfare.</p>\",\"PeriodicalId\":94111,\"journal\":{\"name\":\"Journal of the American Association for Laboratory Animal Science : JAALAS\",\"volume\":\" \",\"pages\":\"325-332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193429/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Association for Laboratory Animal Science : JAALAS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30802/AALAS-JAALAS-23-000083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Association for Laboratory Animal Science : JAALAS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30802/AALAS-JAALAS-23-000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Venipuncture Site Influences Blood-drop Volume in C57BL/6 Mice.
Many experiments require the collection of serial blood samples from mice. However, the size of mice limits the volume of blood that can be safely collected as a survival procedure. In IACUC protocols, investigators may report the amount of blood they collect from mice as a number of drops. Many institutions, including ours, use an anecdotal conversion factor (1drop of mouse blood = 25μL) to ensure that blood-collection volumes are compliant with institutional guidelines. To our knowledge, previous work has not experimentally determined the volume of a drop of mouse blood. In this 10-wk crossover experiment, 2 phlebotomists bled 30 C57BL/6J mice from 3 sites (facial, saphenous, and tail) using one or 2 different needle gauge sizes per site. Male and female mice were weighed weekly and divided among 5 groups (n = 6): left and right tail vein, left and right saphenous vein, and facial vein. A single blood drop from each site was weighed, and the volume of each drop was calculated using the average blood density determined from 8 mice terminally bled at the end of the study. Venipuncture site and side significantly influenced blood-drop weight and thus calculated volume. Facial vein puncture produced the largest drop volume (mean: 21.7μL), followed by the saphenous vein (mean: 9.97μL) and tail vein (mean: 4.96μL). Collection from the facial vein was associated with more hemorrhage and morbidity. Left-sided venipuncture was associated with slightly larger-volume blood drops, though the effect size of side was small. The results of this study may be useful in more accurately estimating blood loss via conversion of drops to volume. Our data indicate that blood collection from saphenous and tail veins minimizes blood loss relative to facial vein puncture and may optimize both serial collection of small-volume blood samples and animal welfare.