Jonathan Stevenson, M Ather Siddiqi, Vicky Sheehy, Ben Kendrick, Duncan Whitwell, Adrian Taylor, Gordon Blunn, Hasan R Mohammad, Atul F Kamath, Sofia Thoma
{"title":"全多孔桥接环在下肢假体重建中的早期放射学效果:评估骨整合的病例匹配回顾性系列研究。","authors":"Jonathan Stevenson, M Ather Siddiqi, Vicky Sheehy, Ben Kendrick, Duncan Whitwell, Adrian Taylor, Gordon Blunn, Hasan R Mohammad, Atul F Kamath, Sofia Thoma","doi":"10.1186/s42836-023-00230-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Limb-salvage surgery involving the utilization of endoprosthetic replacements is commonly employed following segmental bone resection for primary and secondary bone tumors. This study aimed to evaluate whether a fully porous bridging collar promotes early osseous integration in endoprosthetic replacements.</p><p><strong>Methods: </strong>We undertook a retrospective review of all lower-limb endoprostheses utilizing a fully porous endosteal bridging collar design. We matched this cohort with a conventional extra-osteal non-porous fully hydroxyapatite-coated grooved collar cohort according to surgical indication, implant type, resection length, age, and follow-up time. At 6, 12, and 24 months post-implantation, radiographs were assessed for the number of cortices with or without osseointegration on orthogonal radiographs. Each radiograph was scored on a scale of -4 to + 4 for the number of cortices bridging the ongrowth between the bone and the collar of the prosthesis. Implant survival was estimated using the Kaplan-Meier method, and the mean number of osseointegrated cortices at each time point between the collar designs was compared using a paired t-test.</p><p><strong>Results: </strong>Ninety patients were retrospectively identified and analyzed. After exclusion, 40 patients with porous bridging collars matched with 40 patients with conventional extra-osteal non-porous collars were included in the study (n = 80). The mean age was 63.4 years (range 16-91 years); there were 37 males and 43 females. The groups showed no difference in implant survival (P = 0.54). The mean number of cortices with radiographic ongrowth for the porous bridging collar and non-porous collar groups was 2.1 and 0.3, respectively, at 6-month (P < 0.0001), 2.4 and 0.5, respectively, at 12-month (P = 0.044), and 3.2 and -0.2, respectively, at 24-month (P = 0.18) radiological follow-up.</p><p><strong>Conclusion: </strong>These findings indicate that fully porous bridging collars increased the number of cortices, with evidence of bone ongrowth between 6 and 24 months post-implantation. By contrast, extra-osteal collars exhibited reduced evidence of ongrowth between 6 and 24 months post-implantation. In the medium term, the use of a fully porous bridging collar may translate to a reduced incidence of aseptic loosening.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908216/pdf/","citationCount":"0","resultStr":"{\"title\":\"Early radiological outcomes of a fully porous bridging collar in lower-limb endoprosthetic reconstructions: a case-matched retrospective series to assess osseointegration.\",\"authors\":\"Jonathan Stevenson, M Ather Siddiqi, Vicky Sheehy, Ben Kendrick, Duncan Whitwell, Adrian Taylor, Gordon Blunn, Hasan R Mohammad, Atul F Kamath, Sofia Thoma\",\"doi\":\"10.1186/s42836-023-00230-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Limb-salvage surgery involving the utilization of endoprosthetic replacements is commonly employed following segmental bone resection for primary and secondary bone tumors. This study aimed to evaluate whether a fully porous bridging collar promotes early osseous integration in endoprosthetic replacements.</p><p><strong>Methods: </strong>We undertook a retrospective review of all lower-limb endoprostheses utilizing a fully porous endosteal bridging collar design. We matched this cohort with a conventional extra-osteal non-porous fully hydroxyapatite-coated grooved collar cohort according to surgical indication, implant type, resection length, age, and follow-up time. At 6, 12, and 24 months post-implantation, radiographs were assessed for the number of cortices with or without osseointegration on orthogonal radiographs. Each radiograph was scored on a scale of -4 to + 4 for the number of cortices bridging the ongrowth between the bone and the collar of the prosthesis. Implant survival was estimated using the Kaplan-Meier method, and the mean number of osseointegrated cortices at each time point between the collar designs was compared using a paired t-test.</p><p><strong>Results: </strong>Ninety patients were retrospectively identified and analyzed. After exclusion, 40 patients with porous bridging collars matched with 40 patients with conventional extra-osteal non-porous collars were included in the study (n = 80). The mean age was 63.4 years (range 16-91 years); there were 37 males and 43 females. The groups showed no difference in implant survival (P = 0.54). The mean number of cortices with radiographic ongrowth for the porous bridging collar and non-porous collar groups was 2.1 and 0.3, respectively, at 6-month (P < 0.0001), 2.4 and 0.5, respectively, at 12-month (P = 0.044), and 3.2 and -0.2, respectively, at 24-month (P = 0.18) radiological follow-up.</p><p><strong>Conclusion: </strong>These findings indicate that fully porous bridging collars increased the number of cortices, with evidence of bone ongrowth between 6 and 24 months post-implantation. By contrast, extra-osteal collars exhibited reduced evidence of ongrowth between 6 and 24 months post-implantation. In the medium term, the use of a fully porous bridging collar may translate to a reduced incidence of aseptic loosening.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908216/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s42836-023-00230-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s42836-023-00230-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Early radiological outcomes of a fully porous bridging collar in lower-limb endoprosthetic reconstructions: a case-matched retrospective series to assess osseointegration.
Background: Limb-salvage surgery involving the utilization of endoprosthetic replacements is commonly employed following segmental bone resection for primary and secondary bone tumors. This study aimed to evaluate whether a fully porous bridging collar promotes early osseous integration in endoprosthetic replacements.
Methods: We undertook a retrospective review of all lower-limb endoprostheses utilizing a fully porous endosteal bridging collar design. We matched this cohort with a conventional extra-osteal non-porous fully hydroxyapatite-coated grooved collar cohort according to surgical indication, implant type, resection length, age, and follow-up time. At 6, 12, and 24 months post-implantation, radiographs were assessed for the number of cortices with or without osseointegration on orthogonal radiographs. Each radiograph was scored on a scale of -4 to + 4 for the number of cortices bridging the ongrowth between the bone and the collar of the prosthesis. Implant survival was estimated using the Kaplan-Meier method, and the mean number of osseointegrated cortices at each time point between the collar designs was compared using a paired t-test.
Results: Ninety patients were retrospectively identified and analyzed. After exclusion, 40 patients with porous bridging collars matched with 40 patients with conventional extra-osteal non-porous collars were included in the study (n = 80). The mean age was 63.4 years (range 16-91 years); there were 37 males and 43 females. The groups showed no difference in implant survival (P = 0.54). The mean number of cortices with radiographic ongrowth for the porous bridging collar and non-porous collar groups was 2.1 and 0.3, respectively, at 6-month (P < 0.0001), 2.4 and 0.5, respectively, at 12-month (P = 0.044), and 3.2 and -0.2, respectively, at 24-month (P = 0.18) radiological follow-up.
Conclusion: These findings indicate that fully porous bridging collars increased the number of cortices, with evidence of bone ongrowth between 6 and 24 months post-implantation. By contrast, extra-osteal collars exhibited reduced evidence of ongrowth between 6 and 24 months post-implantation. In the medium term, the use of a fully porous bridging collar may translate to a reduced incidence of aseptic loosening.