Hang Zhou, Yu Jin, Sheng Wang, Yixiang Wang, Ming Bu
{"title":"用于快速检测活细胞中硝基的近红外荧光探针。","authors":"Hang Zhou, Yu Jin, Sheng Wang, Yixiang Wang, Ming Bu","doi":"10.1007/s10895-024-03637-5","DOIUrl":null,"url":null,"abstract":"<p><p>Nitroxyl (HNO) plays an important role in various physiological activities. It has the potential to be used as a treatment for certain diseases such as alcohol poisoning, acute hypertension, and atherosclerosis. However, traditional methods for detecting HNO are challenging due to its rapid polymerization and elimination into N<sub>2</sub>O. Therefore, it is crucial to establish direct and effective HNO detection methods to comprehend these physiological processes better. In this study, a new near-infrared fluorescent probe called HXM-P based on the intramolecular charge transfer (ICT) mechanism was designed and synthesized. This probe employs 2-((6-hydroxy-2,3dihydro-1 H-xanthen-4-yl)methylene)malononitrile as a fluorophore and 2-(diphenylphosphine) benzoate as a recognition group. The results showed that probe HXM-P can detect HNO with high sensitivity (1.07 × 10<sup>- 8</sup> M). A good linear correlation was observed between the fluorescence intensities at 640 nm and the concentrations of HNO in the range of 0-80 µM (R<sup>2</sup> = 0.997). Moreover, probe HXM-P exhibited a rapid response rate (within 15 s) toward HNO, and the fluorescent intensity reached a plateau within 5 min, making it easier to track the highly reactive and short-lived HNO in living systems. Additionally, HXM-P was successfully employed for imaging HNO in HepG2 cells.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"1675-1683"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Near-Infrared Fluorescent Probe for the Rapid Detection of Nitroxyl in Living Cells.\",\"authors\":\"Hang Zhou, Yu Jin, Sheng Wang, Yixiang Wang, Ming Bu\",\"doi\":\"10.1007/s10895-024-03637-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitroxyl (HNO) plays an important role in various physiological activities. It has the potential to be used as a treatment for certain diseases such as alcohol poisoning, acute hypertension, and atherosclerosis. However, traditional methods for detecting HNO are challenging due to its rapid polymerization and elimination into N<sub>2</sub>O. Therefore, it is crucial to establish direct and effective HNO detection methods to comprehend these physiological processes better. In this study, a new near-infrared fluorescent probe called HXM-P based on the intramolecular charge transfer (ICT) mechanism was designed and synthesized. This probe employs 2-((6-hydroxy-2,3dihydro-1 H-xanthen-4-yl)methylene)malononitrile as a fluorophore and 2-(diphenylphosphine) benzoate as a recognition group. The results showed that probe HXM-P can detect HNO with high sensitivity (1.07 × 10<sup>- 8</sup> M). A good linear correlation was observed between the fluorescence intensities at 640 nm and the concentrations of HNO in the range of 0-80 µM (R<sup>2</sup> = 0.997). Moreover, probe HXM-P exhibited a rapid response rate (within 15 s) toward HNO, and the fluorescent intensity reached a plateau within 5 min, making it easier to track the highly reactive and short-lived HNO in living systems. Additionally, HXM-P was successfully employed for imaging HNO in HepG2 cells.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"1675-1683\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03637-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03637-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Near-Infrared Fluorescent Probe for the Rapid Detection of Nitroxyl in Living Cells.
Nitroxyl (HNO) plays an important role in various physiological activities. It has the potential to be used as a treatment for certain diseases such as alcohol poisoning, acute hypertension, and atherosclerosis. However, traditional methods for detecting HNO are challenging due to its rapid polymerization and elimination into N2O. Therefore, it is crucial to establish direct and effective HNO detection methods to comprehend these physiological processes better. In this study, a new near-infrared fluorescent probe called HXM-P based on the intramolecular charge transfer (ICT) mechanism was designed and synthesized. This probe employs 2-((6-hydroxy-2,3dihydro-1 H-xanthen-4-yl)methylene)malononitrile as a fluorophore and 2-(diphenylphosphine) benzoate as a recognition group. The results showed that probe HXM-P can detect HNO with high sensitivity (1.07 × 10- 8 M). A good linear correlation was observed between the fluorescence intensities at 640 nm and the concentrations of HNO in the range of 0-80 µM (R2 = 0.997). Moreover, probe HXM-P exhibited a rapid response rate (within 15 s) toward HNO, and the fluorescent intensity reached a plateau within 5 min, making it easier to track the highly reactive and short-lived HNO in living systems. Additionally, HXM-P was successfully employed for imaging HNO in HepG2 cells.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.