Molly Burke, Erika Marín-Spiotta, Alexandra G. Ponette-González
{"title":"城市土壤中的黑碳:土地利用和气候驱动地表变化。","authors":"Molly Burke, Erika Marín-Spiotta, Alexandra G. Ponette-González","doi":"10.1186/s13021-024-00255-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Black carbon (BC) encompasses a range of carbonaceous materials––including soot, char, and charcoal––derived from the incomplete combustion of fossil fuels and biomass. Urban soils can become enriched in BC due to proximity to these combustion sources. We conducted a literature review of BC in urban soils globally and found 26 studies reporting BC and total organic carbon (TOC) content collected to a maximum of 578 cm depth in urban soils across 35 cities and 10 countries. We recorded data on city, climate, and land use/land cover characteristics to examine drivers of BC content and contribution to TOC in soil.</p><h3>Results</h3><p>All studies were conducted in the northern hemisphere, with 68% of the data points collected in China and the United States. Surface samples (0–20 cm) accounted for 62% of samples in the dataset. Therefore, we focused our analysis on 0–10 cm and 10–20 cm depths. Urban soil BC content ranged from 0–124 mg/g (median = 3 mg/g) at 0–10 cm and from 0–53 mg/g (median = 2.8 mg/g) at 10–20 cm depth. The median proportional contribution of BC to TOC was 23% and 15% at 0–10 cm and 10–20 cm, respectively. Surface soils sampled in industrial land use and near roads had the highest BC contents and proportions, whereas samples from residential sites had among the lowest. Soil BC content decreased with mean annual soil temperature.</p><h3>Conclusions</h3><p>Our review indicates that BC comprises a major fraction (nearly one quarter) of the TOC in urban surface soils, yet sampling bias towards the surface could hide the potential for BC storage at depth. Land use emerged as an importer driver of soil BC contents and proportions, whereas land cover effects remain uncertain. Warmer and wetter soils were found to have lower soil BC than cooler and drier soils, differences that likely reflect soil BC loss mechanisms. Additional research on urban soil BC at depth and from diverse climates is critical to better understand the role of cities in the global carbon cycle.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00255-3","citationCount":"0","resultStr":"{\"title\":\"Black carbon in urban soils: land use and climate drive variation at the surface\",\"authors\":\"Molly Burke, Erika Marín-Spiotta, Alexandra G. Ponette-González\",\"doi\":\"10.1186/s13021-024-00255-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Black carbon (BC) encompasses a range of carbonaceous materials––including soot, char, and charcoal––derived from the incomplete combustion of fossil fuels and biomass. Urban soils can become enriched in BC due to proximity to these combustion sources. We conducted a literature review of BC in urban soils globally and found 26 studies reporting BC and total organic carbon (TOC) content collected to a maximum of 578 cm depth in urban soils across 35 cities and 10 countries. We recorded data on city, climate, and land use/land cover characteristics to examine drivers of BC content and contribution to TOC in soil.</p><h3>Results</h3><p>All studies were conducted in the northern hemisphere, with 68% of the data points collected in China and the United States. Surface samples (0–20 cm) accounted for 62% of samples in the dataset. Therefore, we focused our analysis on 0–10 cm and 10–20 cm depths. Urban soil BC content ranged from 0–124 mg/g (median = 3 mg/g) at 0–10 cm and from 0–53 mg/g (median = 2.8 mg/g) at 10–20 cm depth. The median proportional contribution of BC to TOC was 23% and 15% at 0–10 cm and 10–20 cm, respectively. Surface soils sampled in industrial land use and near roads had the highest BC contents and proportions, whereas samples from residential sites had among the lowest. Soil BC content decreased with mean annual soil temperature.</p><h3>Conclusions</h3><p>Our review indicates that BC comprises a major fraction (nearly one quarter) of the TOC in urban surface soils, yet sampling bias towards the surface could hide the potential for BC storage at depth. Land use emerged as an importer driver of soil BC contents and proportions, whereas land cover effects remain uncertain. Warmer and wetter soils were found to have lower soil BC than cooler and drier soils, differences that likely reflect soil BC loss mechanisms. Additional research on urban soil BC at depth and from diverse climates is critical to better understand the role of cities in the global carbon cycle.</p></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00255-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-024-00255-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00255-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Black carbon in urban soils: land use and climate drive variation at the surface
Background
Black carbon (BC) encompasses a range of carbonaceous materials––including soot, char, and charcoal––derived from the incomplete combustion of fossil fuels and biomass. Urban soils can become enriched in BC due to proximity to these combustion sources. We conducted a literature review of BC in urban soils globally and found 26 studies reporting BC and total organic carbon (TOC) content collected to a maximum of 578 cm depth in urban soils across 35 cities and 10 countries. We recorded data on city, climate, and land use/land cover characteristics to examine drivers of BC content and contribution to TOC in soil.
Results
All studies were conducted in the northern hemisphere, with 68% of the data points collected in China and the United States. Surface samples (0–20 cm) accounted for 62% of samples in the dataset. Therefore, we focused our analysis on 0–10 cm and 10–20 cm depths. Urban soil BC content ranged from 0–124 mg/g (median = 3 mg/g) at 0–10 cm and from 0–53 mg/g (median = 2.8 mg/g) at 10–20 cm depth. The median proportional contribution of BC to TOC was 23% and 15% at 0–10 cm and 10–20 cm, respectively. Surface soils sampled in industrial land use and near roads had the highest BC contents and proportions, whereas samples from residential sites had among the lowest. Soil BC content decreased with mean annual soil temperature.
Conclusions
Our review indicates that BC comprises a major fraction (nearly one quarter) of the TOC in urban surface soils, yet sampling bias towards the surface could hide the potential for BC storage at depth. Land use emerged as an importer driver of soil BC contents and proportions, whereas land cover effects remain uncertain. Warmer and wetter soils were found to have lower soil BC than cooler and drier soils, differences that likely reflect soil BC loss mechanisms. Additional research on urban soil BC at depth and from diverse climates is critical to better understand the role of cities in the global carbon cycle.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.