Thaína A. Azevedo Tosta, Paulo Rogério de Faria, Leandro Alves Neves, Alessandro Santana Martins, Chetna Kaushal, Marcelo Zanchetta do Nascimento
{"title":"应用于 H&E 组织学图像归一化的稀疏度量和进化算法评估","authors":"Thaína A. Azevedo Tosta, Paulo Rogério de Faria, Leandro Alves Neves, Alessandro Santana Martins, Chetna Kaushal, Marcelo Zanchetta do Nascimento","doi":"10.1007/s10044-024-01218-7","DOIUrl":null,"url":null,"abstract":"<p>Color variations in H&E histological images can impact the segmentation and classification stages of computational systems used for cancer diagnosis. To address these variations, normalization techniques can be applied to adjust the colors of histological images. Estimates of stain color appearance matrices and stain density maps can be employed to carry out these color adjustments. This study explores these estimates by leveraging a significant biological characteristic of stain mixtures, which is represented by a sparsity parameter. Computationally estimating this parameter can be accomplished through various sparsity measures and evolutionary algorithms. Therefore, this study aimed to evaluate the effectiveness of different sparsity measures and algorithms for color normalization of H&E-stained histological images. The results obtained demonstrated that the choice of different sparsity measures significantly impacts the outcomes of normalization. The sparsity metric <span>\\(l_{\\epsilon }^{0}\\)</span> proved to be the most suitable for it. Conversely, the evolutionary algorithms showed little variations in the conducted quantitative analyses. Regarding the selection of the best evolutionary algorithm, the results indicated that particle swarm optimization with a population size of 250 individuals is the most appropriate choice.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"34 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of sparsity metrics and evolutionary algorithms applied for normalization of H&E histological images\",\"authors\":\"Thaína A. Azevedo Tosta, Paulo Rogério de Faria, Leandro Alves Neves, Alessandro Santana Martins, Chetna Kaushal, Marcelo Zanchetta do Nascimento\",\"doi\":\"10.1007/s10044-024-01218-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Color variations in H&E histological images can impact the segmentation and classification stages of computational systems used for cancer diagnosis. To address these variations, normalization techniques can be applied to adjust the colors of histological images. Estimates of stain color appearance matrices and stain density maps can be employed to carry out these color adjustments. This study explores these estimates by leveraging a significant biological characteristic of stain mixtures, which is represented by a sparsity parameter. Computationally estimating this parameter can be accomplished through various sparsity measures and evolutionary algorithms. Therefore, this study aimed to evaluate the effectiveness of different sparsity measures and algorithms for color normalization of H&E-stained histological images. The results obtained demonstrated that the choice of different sparsity measures significantly impacts the outcomes of normalization. The sparsity metric <span>\\\\(l_{\\\\epsilon }^{0}\\\\)</span> proved to be the most suitable for it. Conversely, the evolutionary algorithms showed little variations in the conducted quantitative analyses. Regarding the selection of the best evolutionary algorithm, the results indicated that particle swarm optimization with a population size of 250 individuals is the most appropriate choice.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01218-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01218-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Evaluation of sparsity metrics and evolutionary algorithms applied for normalization of H&E histological images
Color variations in H&E histological images can impact the segmentation and classification stages of computational systems used for cancer diagnosis. To address these variations, normalization techniques can be applied to adjust the colors of histological images. Estimates of stain color appearance matrices and stain density maps can be employed to carry out these color adjustments. This study explores these estimates by leveraging a significant biological characteristic of stain mixtures, which is represented by a sparsity parameter. Computationally estimating this parameter can be accomplished through various sparsity measures and evolutionary algorithms. Therefore, this study aimed to evaluate the effectiveness of different sparsity measures and algorithms for color normalization of H&E-stained histological images. The results obtained demonstrated that the choice of different sparsity measures significantly impacts the outcomes of normalization. The sparsity metric \(l_{\epsilon }^{0}\) proved to be the most suitable for it. Conversely, the evolutionary algorithms showed little variations in the conducted quantitative analyses. Regarding the selection of the best evolutionary algorithm, the results indicated that particle swarm optimization with a population size of 250 individuals is the most appropriate choice.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.