Fengyu Huang, Faqin Dong, Li Chen, Yi Zeng, Lei Zhou, Shiyong Sun, Zhe Wang, Jinlong Lai, Linchuan Fang
{"title":"生物炭介导的铀污染土壤修复:证据、机制和前景","authors":"Fengyu Huang, Faqin Dong, Li Chen, Yi Zeng, Lei Zhou, Shiyong Sun, Zhe Wang, Jinlong Lai, Linchuan Fang","doi":"10.1007/s42773-024-00308-3","DOIUrl":null,"url":null,"abstract":"<p>Soil contamination by uranium presents a burgeoning global environmental concern, exerting detrimental effects on both agricultural production and soil health. Biochar, a carbonaceous material derived from biomass pyrolysis, exhibits considerable potential for remediating uranium-contaminated soils. However, a comprehensive review of the effects of biochar on the fate and accumulation of uranium in soil–plant systems remains conspicuously absent. In this paper, uranium sources and contamination are reviewed, and the impact of biochar on uranium immobilization and detoxification in soil–plant systems is analyzed. We reviewed the status of uranium contamination in soils globally and found that mining activities are currently the main sources. Further meta-analysis revealed that biochar addition significantly reduced the soil uranium bioavailability and shoot uranium accumulation, and their effect value is 58.9% (40.8–76.8%) and 39.7% (15.7–63.8%), respectively. Additionally, biochar enhances the soil microenvironment, providing favourable conditions for promoting plant growth and reducing uranium mobility. We focused on the mechanisms governing the interaction between biochar and uranium, emphasising the considerable roles played by surface complexation, reduction, ion exchange, and physical adsorption. The modification of biochar by intensifying these mechanisms can promote uranium immobilisation in soils. Finally, biochar alleviates oxidative stress and reduces uranium accumulation in plant tissues, thereby mitigating the adverse effects of uranium on plant growth and development. Overall, our review highlights the capacity of biochar to remediate uranium contamination in soil–plant systems through diverse mechanisms, providing valuable insights for sustainable environmental remediation.</p><p><b>Highlights</b></p><ul>\n<li>\n<p>Biochar reduces uranium mobility through a variety of mechanisms, including surface complexation, reduction, ion exchange, and physical adsorption.</p>\n</li>\n<li>\n<p>Biochar significantly reduces uranium bioavailability in soil and limits its accumulation in plants.</p>\n</li>\n<li>\n<p>Modified biochar has been shown to enhance its effectiveness in immobilising uranium.</p>\n</li>\n<li>\n<p>Biochar application to soil not only promotes uranium remediation but also improves soil quality.</p>\n</li>\n</ul><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"25 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar-mediated remediation of uranium-contaminated soils: evidence, mechanisms, and perspectives\",\"authors\":\"Fengyu Huang, Faqin Dong, Li Chen, Yi Zeng, Lei Zhou, Shiyong Sun, Zhe Wang, Jinlong Lai, Linchuan Fang\",\"doi\":\"10.1007/s42773-024-00308-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soil contamination by uranium presents a burgeoning global environmental concern, exerting detrimental effects on both agricultural production and soil health. Biochar, a carbonaceous material derived from biomass pyrolysis, exhibits considerable potential for remediating uranium-contaminated soils. However, a comprehensive review of the effects of biochar on the fate and accumulation of uranium in soil–plant systems remains conspicuously absent. In this paper, uranium sources and contamination are reviewed, and the impact of biochar on uranium immobilization and detoxification in soil–plant systems is analyzed. We reviewed the status of uranium contamination in soils globally and found that mining activities are currently the main sources. Further meta-analysis revealed that biochar addition significantly reduced the soil uranium bioavailability and shoot uranium accumulation, and their effect value is 58.9% (40.8–76.8%) and 39.7% (15.7–63.8%), respectively. Additionally, biochar enhances the soil microenvironment, providing favourable conditions for promoting plant growth and reducing uranium mobility. We focused on the mechanisms governing the interaction between biochar and uranium, emphasising the considerable roles played by surface complexation, reduction, ion exchange, and physical adsorption. The modification of biochar by intensifying these mechanisms can promote uranium immobilisation in soils. Finally, biochar alleviates oxidative stress and reduces uranium accumulation in plant tissues, thereby mitigating the adverse effects of uranium on plant growth and development. Overall, our review highlights the capacity of biochar to remediate uranium contamination in soil–plant systems through diverse mechanisms, providing valuable insights for sustainable environmental remediation.</p><p><b>Highlights</b></p><ul>\\n<li>\\n<p>Biochar reduces uranium mobility through a variety of mechanisms, including surface complexation, reduction, ion exchange, and physical adsorption.</p>\\n</li>\\n<li>\\n<p>Biochar significantly reduces uranium bioavailability in soil and limits its accumulation in plants.</p>\\n</li>\\n<li>\\n<p>Modified biochar has been shown to enhance its effectiveness in immobilising uranium.</p>\\n</li>\\n<li>\\n<p>Biochar application to soil not only promotes uranium remediation but also improves soil quality.</p>\\n</li>\\n</ul><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-024-00308-3\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00308-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Biochar-mediated remediation of uranium-contaminated soils: evidence, mechanisms, and perspectives
Soil contamination by uranium presents a burgeoning global environmental concern, exerting detrimental effects on both agricultural production and soil health. Biochar, a carbonaceous material derived from biomass pyrolysis, exhibits considerable potential for remediating uranium-contaminated soils. However, a comprehensive review of the effects of biochar on the fate and accumulation of uranium in soil–plant systems remains conspicuously absent. In this paper, uranium sources and contamination are reviewed, and the impact of biochar on uranium immobilization and detoxification in soil–plant systems is analyzed. We reviewed the status of uranium contamination in soils globally and found that mining activities are currently the main sources. Further meta-analysis revealed that biochar addition significantly reduced the soil uranium bioavailability and shoot uranium accumulation, and their effect value is 58.9% (40.8–76.8%) and 39.7% (15.7–63.8%), respectively. Additionally, biochar enhances the soil microenvironment, providing favourable conditions for promoting plant growth and reducing uranium mobility. We focused on the mechanisms governing the interaction between biochar and uranium, emphasising the considerable roles played by surface complexation, reduction, ion exchange, and physical adsorption. The modification of biochar by intensifying these mechanisms can promote uranium immobilisation in soils. Finally, biochar alleviates oxidative stress and reduces uranium accumulation in plant tissues, thereby mitigating the adverse effects of uranium on plant growth and development. Overall, our review highlights the capacity of biochar to remediate uranium contamination in soil–plant systems through diverse mechanisms, providing valuable insights for sustainable environmental remediation.
Highlights
Biochar reduces uranium mobility through a variety of mechanisms, including surface complexation, reduction, ion exchange, and physical adsorption.
Biochar significantly reduces uranium bioavailability in soil and limits its accumulation in plants.
Modified biochar has been shown to enhance its effectiveness in immobilising uranium.
Biochar application to soil not only promotes uranium remediation but also improves soil quality.
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.