Dong Won Shin, Seon Yeong Kim, Sung Ill Suh, Jin Young Kim
{"title":"利用 LC-MS/MS 同时测定头发中的葡萄糖醛酸乙酯、可卡因、古柯碱和苯甲酰可待因","authors":"Dong Won Shin, Seon Yeong Kim, Sung Ill Suh, Jin Young Kim","doi":"10.1186/s40543-023-00412-2","DOIUrl":null,"url":null,"abstract":"Alcohol and cocaine (COC) are commonly co-used drugs that cause addiction and have harmful effects. Their abuse may threaten the health of the abuser and public safety by causing serious accidents or crimes. The recidivism rate of drug-related crimes closely correlates with alcoholism. Several incidences of alcohol consumption in combination with drug abuse have been reported. Here, liquid chromatography tandem mass spectrometric method was developed to simultaneously analyze ethyl glucuronide (EtG), a metabolite of ethanol; COC; cocaethylene (CE), an alcohol-derived metabolite of COC; and benzoylecgonine (BZE), a major metabolite of COC, to determine the concurrent use of alcohol with COC. For pre-treatment, ultracentrifugation (5 min, 50,000 g) and mixed-mode anion exchange solid-phase extraction were used to increase the recovery of target compounds and minimize the matrix effect of hair. The lower limits of quantification were: 7 pg/mg (EtG), 2 pg/mg (COC), 10 pg/mg (CE), and 1 pg/mg (BZE). The correlation coefficient (r) of the calibration curve within the quantified range of target compounds was ≥ 0.9978. The intra- and inter-day accuracies were − 6.1–9.7% and − 9.3–8.3%, and intra- and inter-day precisions were 0.5–10.3% and 0.6–14.4%, respectively. The recovery, matrix effect, process efficiency, and autosampler stability were 89.2–104.8%, 81.6–105.4%, 81.5–107.1%, and 96.6–109.7%, respectively. The novel analytical method was validated with hair samples from individuals suspected of alcohol and COC use, and the method could distinguish between independent and concurrent use. Based on the findings, the analytical approach developed in this study is anticipated to be valuable in drug and alcohol dependence tests that require the simultaneous detection of alcohol and COC abuse.","PeriodicalId":14967,"journal":{"name":"Journal of Analytical Science and Technology","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous determination of ethyl glucuronide, cocaine, cocaethylene, and benzoylecgonine in hair by using LC–MS/MS\",\"authors\":\"Dong Won Shin, Seon Yeong Kim, Sung Ill Suh, Jin Young Kim\",\"doi\":\"10.1186/s40543-023-00412-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alcohol and cocaine (COC) are commonly co-used drugs that cause addiction and have harmful effects. Their abuse may threaten the health of the abuser and public safety by causing serious accidents or crimes. The recidivism rate of drug-related crimes closely correlates with alcoholism. Several incidences of alcohol consumption in combination with drug abuse have been reported. Here, liquid chromatography tandem mass spectrometric method was developed to simultaneously analyze ethyl glucuronide (EtG), a metabolite of ethanol; COC; cocaethylene (CE), an alcohol-derived metabolite of COC; and benzoylecgonine (BZE), a major metabolite of COC, to determine the concurrent use of alcohol with COC. For pre-treatment, ultracentrifugation (5 min, 50,000 g) and mixed-mode anion exchange solid-phase extraction were used to increase the recovery of target compounds and minimize the matrix effect of hair. The lower limits of quantification were: 7 pg/mg (EtG), 2 pg/mg (COC), 10 pg/mg (CE), and 1 pg/mg (BZE). The correlation coefficient (r) of the calibration curve within the quantified range of target compounds was ≥ 0.9978. The intra- and inter-day accuracies were − 6.1–9.7% and − 9.3–8.3%, and intra- and inter-day precisions were 0.5–10.3% and 0.6–14.4%, respectively. The recovery, matrix effect, process efficiency, and autosampler stability were 89.2–104.8%, 81.6–105.4%, 81.5–107.1%, and 96.6–109.7%, respectively. The novel analytical method was validated with hair samples from individuals suspected of alcohol and COC use, and the method could distinguish between independent and concurrent use. Based on the findings, the analytical approach developed in this study is anticipated to be valuable in drug and alcohol dependence tests that require the simultaneous detection of alcohol and COC abuse.\",\"PeriodicalId\":14967,\"journal\":{\"name\":\"Journal of Analytical Science and Technology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Science and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1186/s40543-023-00412-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Science and Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40543-023-00412-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Simultaneous determination of ethyl glucuronide, cocaine, cocaethylene, and benzoylecgonine in hair by using LC–MS/MS
Alcohol and cocaine (COC) are commonly co-used drugs that cause addiction and have harmful effects. Their abuse may threaten the health of the abuser and public safety by causing serious accidents or crimes. The recidivism rate of drug-related crimes closely correlates with alcoholism. Several incidences of alcohol consumption in combination with drug abuse have been reported. Here, liquid chromatography tandem mass spectrometric method was developed to simultaneously analyze ethyl glucuronide (EtG), a metabolite of ethanol; COC; cocaethylene (CE), an alcohol-derived metabolite of COC; and benzoylecgonine (BZE), a major metabolite of COC, to determine the concurrent use of alcohol with COC. For pre-treatment, ultracentrifugation (5 min, 50,000 g) and mixed-mode anion exchange solid-phase extraction were used to increase the recovery of target compounds and minimize the matrix effect of hair. The lower limits of quantification were: 7 pg/mg (EtG), 2 pg/mg (COC), 10 pg/mg (CE), and 1 pg/mg (BZE). The correlation coefficient (r) of the calibration curve within the quantified range of target compounds was ≥ 0.9978. The intra- and inter-day accuracies were − 6.1–9.7% and − 9.3–8.3%, and intra- and inter-day precisions were 0.5–10.3% and 0.6–14.4%, respectively. The recovery, matrix effect, process efficiency, and autosampler stability were 89.2–104.8%, 81.6–105.4%, 81.5–107.1%, and 96.6–109.7%, respectively. The novel analytical method was validated with hair samples from individuals suspected of alcohol and COC use, and the method could distinguish between independent and concurrent use. Based on the findings, the analytical approach developed in this study is anticipated to be valuable in drug and alcohol dependence tests that require the simultaneous detection of alcohol and COC abuse.
期刊介绍:
The Journal of Analytical Science and Technology (JAST) is a fully open access peer-reviewed scientific journal published under the brand SpringerOpen. JAST was launched by Korea Basic Science Institute in 2010. JAST publishes original research and review articles on all aspects of analytical principles, techniques, methods, procedures, and equipment. JAST’s vision is to be an internationally influential and widely read analytical science journal. Our mission is to inform and stimulate researchers to make significant professional achievements in science. We aim to provide scientists, researchers, and students worldwide with unlimited access to the latest advances of the analytical sciences.