{"title":"MoMENt:用于用户活动建模的记忆增强型神经网络标记点过程","authors":"Sherry Sahebi, Mengfan Yao, Siqian Zhao, Reza Feyzi Behnagh","doi":"10.1145/3649504","DOIUrl":null,"url":null,"abstract":"<p>Marked temporal point process models (MTPPs) aim to model event sequences and event markers (associated features) in continuous time. These models have been applied to various application domains where capturing event dynamics in continuous time is beneficial, such as education systems, social networks, and recommender systems. However, current MTPPs suffer from two major limitations, i.e., inefficient representation of event dynamic’s influence on marker distribution and losing fine-grained representation of historical marker distributions in the modeling. Motivated by these limitations, we propose a novel model called <underline>M</underline>arked P<underline>o</underline>int Processes with <underline>M</underline>emory-<underline>E</underline>nhanced <underline>N</underline>eural Ne<underline>t</underline>works (MoMENt) that can capture the bidirectional interrelations between markers and event dynamics while providing fine-grained marker representations. Specifically, MoMENt is constructed of two concurrent networks: Recurrent Activity Updater (RAU) to capture model event dynamics and Memory-Enhanced Marker Updater (MEMU) to represent markers. Both RAU and MEMU components are designed to update each other at every step to model the bidirectional influence of markers and event dynamics. To obtain a fine-grained representation of maker distributions, MEMU is devised with external memories that model detailed marker-level features with latent component vectors. Our extensive experiments on six real-world user interaction datasets demonstrate that MoMENt can accurately represent users’ activity dynamics, boosting time, type, and marker predictions, as well as recommendation performance up to \\(76.5\\% \\), \\(65.6\\% \\), \\(77.2\\% \\), and \\(57.7\\% \\), respectively, compared to baseline approaches. Furthermore, our case studies show the effectiveness of MoMENt in providing meaningful and fine-grained interpretations of user-system relations over time, e.g., how user choices influence their future preferences in the recommendation domain.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"18 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MoMENt: Marked Point Processes with Memory-Enhanced Neural Networks for User Activity Modeling\",\"authors\":\"Sherry Sahebi, Mengfan Yao, Siqian Zhao, Reza Feyzi Behnagh\",\"doi\":\"10.1145/3649504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Marked temporal point process models (MTPPs) aim to model event sequences and event markers (associated features) in continuous time. These models have been applied to various application domains where capturing event dynamics in continuous time is beneficial, such as education systems, social networks, and recommender systems. However, current MTPPs suffer from two major limitations, i.e., inefficient representation of event dynamic’s influence on marker distribution and losing fine-grained representation of historical marker distributions in the modeling. Motivated by these limitations, we propose a novel model called <underline>M</underline>arked P<underline>o</underline>int Processes with <underline>M</underline>emory-<underline>E</underline>nhanced <underline>N</underline>eural Ne<underline>t</underline>works (MoMENt) that can capture the bidirectional interrelations between markers and event dynamics while providing fine-grained marker representations. Specifically, MoMENt is constructed of two concurrent networks: Recurrent Activity Updater (RAU) to capture model event dynamics and Memory-Enhanced Marker Updater (MEMU) to represent markers. Both RAU and MEMU components are designed to update each other at every step to model the bidirectional influence of markers and event dynamics. To obtain a fine-grained representation of maker distributions, MEMU is devised with external memories that model detailed marker-level features with latent component vectors. Our extensive experiments on six real-world user interaction datasets demonstrate that MoMENt can accurately represent users’ activity dynamics, boosting time, type, and marker predictions, as well as recommendation performance up to \\\\(76.5\\\\% \\\\), \\\\(65.6\\\\% \\\\), \\\\(77.2\\\\% \\\\), and \\\\(57.7\\\\% \\\\), respectively, compared to baseline approaches. Furthermore, our case studies show the effectiveness of MoMENt in providing meaningful and fine-grained interpretations of user-system relations over time, e.g., how user choices influence their future preferences in the recommendation domain.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3649504\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649504","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
MoMENt: Marked Point Processes with Memory-Enhanced Neural Networks for User Activity Modeling
Marked temporal point process models (MTPPs) aim to model event sequences and event markers (associated features) in continuous time. These models have been applied to various application domains where capturing event dynamics in continuous time is beneficial, such as education systems, social networks, and recommender systems. However, current MTPPs suffer from two major limitations, i.e., inefficient representation of event dynamic’s influence on marker distribution and losing fine-grained representation of historical marker distributions in the modeling. Motivated by these limitations, we propose a novel model called Marked Point Processes with Memory-Enhanced Neural Networks (MoMENt) that can capture the bidirectional interrelations between markers and event dynamics while providing fine-grained marker representations. Specifically, MoMENt is constructed of two concurrent networks: Recurrent Activity Updater (RAU) to capture model event dynamics and Memory-Enhanced Marker Updater (MEMU) to represent markers. Both RAU and MEMU components are designed to update each other at every step to model the bidirectional influence of markers and event dynamics. To obtain a fine-grained representation of maker distributions, MEMU is devised with external memories that model detailed marker-level features with latent component vectors. Our extensive experiments on six real-world user interaction datasets demonstrate that MoMENt can accurately represent users’ activity dynamics, boosting time, type, and marker predictions, as well as recommendation performance up to \(76.5\% \), \(65.6\% \), \(77.2\% \), and \(57.7\% \), respectively, compared to baseline approaches. Furthermore, our case studies show the effectiveness of MoMENt in providing meaningful and fine-grained interpretations of user-system relations over time, e.g., how user choices influence their future preferences in the recommendation domain.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.