梅蒂维尔不等式和超微分低椭球性

Pub Date : 2024-02-28 DOI:10.1002/mana.202300147
Paulo D. Cordaro, Stefan Fürdös
{"title":"梅蒂维尔不等式和超微分低椭球性","authors":"Paulo D. Cordaro,&nbsp;Stefan Fürdös","doi":"10.1002/mana.202300147","DOIUrl":null,"url":null,"abstract":"<p>In 1980, Métivier characterized the analytic (and Gevrey) hypoellipticity of <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math>-solvable partial linear differential operators by a priori estimates. In this note, we extend this characterization to ultradifferentiable hypoellipticity with respect to Denjoy–Carleman classes given by suitable weight sequences. We also discuss the case when the solutions can be taken as hyperfunctions and present some applications.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300147","citationCount":"0","resultStr":"{\"title\":\"The Metivier inequality and ultradifferentiable hypoellipticity\",\"authors\":\"Paulo D. Cordaro,&nbsp;Stefan Fürdös\",\"doi\":\"10.1002/mana.202300147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1980, Métivier characterized the analytic (and Gevrey) hypoellipticity of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^2$</annotation>\\n </semantics></math>-solvable partial linear differential operators by a priori estimates. In this note, we extend this characterization to ultradifferentiable hypoellipticity with respect to Denjoy–Carleman classes given by suitable weight sequences. We also discuss the case when the solutions can be taken as hyperfunctions and present some applications.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300147\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1980 年,Métivier 通过先验估计描述了可解偏线性微分算子的解析(和 Gevrey)次椭圆性。在本论文中,我们将这一特征扩展到由适当权重序列给出的 Denjoy-Carleman 类的超微分低椭圆性。我们还讨论了解可以作为超函数的情况,并介绍了一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Metivier inequality and ultradifferentiable hypoellipticity

In 1980, Métivier characterized the analytic (and Gevrey) hypoellipticity of L 2 $L^2$ -solvable partial linear differential operators by a priori estimates. In this note, we extend this characterization to ultradifferentiable hypoellipticity with respect to Denjoy–Carleman classes given by suitable weight sequences. We also discuss the case when the solutions can be taken as hyperfunctions and present some applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信