通过迭代误差状态卡尔曼滤波器实现从粗到精的快速稳定 GNSS-LiDAR 惯性状态估计器

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Jixin Gao , Jianjun Sha , Yanheng Wang , Xiangwei Wang , Cong Tan
{"title":"通过迭代误差状态卡尔曼滤波器实现从粗到精的快速稳定 GNSS-LiDAR 惯性状态估计器","authors":"Jixin Gao ,&nbsp;Jianjun Sha ,&nbsp;Yanheng Wang ,&nbsp;Xiangwei Wang ,&nbsp;Cong Tan","doi":"10.1016/j.robot.2024.104675","DOIUrl":null,"url":null,"abstract":"<div><p>Simultaneous localization and mapping (SLAM) aims to solve the problems of robot localization and mapping in unknown environments. Recent related research usually uses closed-loop correction or integrate GNSS (Global Navigation Satellite System) into the optimization framework to ensure the long-term system accuracy and stability at the cost of huge computational resources. To balance efficiency and accuracy, this paper presents a fast and stable GNSS-LiDAR-inertial state estimator: GNSS, LiDAR and IMU are fused to achieve state estimation from coarse to fine, thereby improving the system accuracy and stability; the overall framework based on iterated error-state Kalman filter makes our system faster than most multi-sensor fusion SLAM. We also design a fast GNSS online initialization method and a multi-layer outlier rejection mechanism for our system. In addition, we apply backward propagation for multi-sensor motion compensation to overcome the limitations of fast motion. Finally, comprehensive experiments demonstrate that our system achieves higher accuracy and computational efficiency than the state-of-the-art navigation systems on the latest challenging public datasets, and perform equally well in the real environment.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast and stable GNSS-LiDAR-inertial state estimator from coarse to fine by iterated error-state Kalman filter\",\"authors\":\"Jixin Gao ,&nbsp;Jianjun Sha ,&nbsp;Yanheng Wang ,&nbsp;Xiangwei Wang ,&nbsp;Cong Tan\",\"doi\":\"10.1016/j.robot.2024.104675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Simultaneous localization and mapping (SLAM) aims to solve the problems of robot localization and mapping in unknown environments. Recent related research usually uses closed-loop correction or integrate GNSS (Global Navigation Satellite System) into the optimization framework to ensure the long-term system accuracy and stability at the cost of huge computational resources. To balance efficiency and accuracy, this paper presents a fast and stable GNSS-LiDAR-inertial state estimator: GNSS, LiDAR and IMU are fused to achieve state estimation from coarse to fine, thereby improving the system accuracy and stability; the overall framework based on iterated error-state Kalman filter makes our system faster than most multi-sensor fusion SLAM. We also design a fast GNSS online initialization method and a multi-layer outlier rejection mechanism for our system. In addition, we apply backward propagation for multi-sensor motion compensation to overcome the limitations of fast motion. Finally, comprehensive experiments demonstrate that our system achieves higher accuracy and computational efficiency than the state-of-the-art navigation systems on the latest challenging public datasets, and perform equally well in the real environment.</p></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024000587\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024000587","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

同步定位与绘图(SLAM)旨在解决机器人在未知环境中的定位与绘图问题。近期的相关研究通常采用闭环校正或将全球导航卫星系统(GNSS)纳入优化框架,以巨大的计算资源为代价确保系统的长期精度和稳定性。为了兼顾效率和精度,本文提出了一种快速稳定的 GNSS-LiDAR 惯性状态估计器:通过融合 GNSS、LiDAR 和 IMU,实现了从粗到细的状态估计,从而提高了系统精度和稳定性;基于迭代误差状态卡尔曼滤波器的整体框架使我们的系统比大多数多传感器融合 SLAM 更快。我们还为系统设计了快速 GNSS 在线初始化方法和多层离群点剔除机制。此外,我们还将后向传播用于多传感器运动补偿,以克服快速运动的限制。最后,综合实验证明,我们的系统在最新的具有挑战性的公共数据集上实现了比最先进导航系统更高的精度和计算效率,并且在真实环境中表现同样出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast and stable GNSS-LiDAR-inertial state estimator from coarse to fine by iterated error-state Kalman filter

Simultaneous localization and mapping (SLAM) aims to solve the problems of robot localization and mapping in unknown environments. Recent related research usually uses closed-loop correction or integrate GNSS (Global Navigation Satellite System) into the optimization framework to ensure the long-term system accuracy and stability at the cost of huge computational resources. To balance efficiency and accuracy, this paper presents a fast and stable GNSS-LiDAR-inertial state estimator: GNSS, LiDAR and IMU are fused to achieve state estimation from coarse to fine, thereby improving the system accuracy and stability; the overall framework based on iterated error-state Kalman filter makes our system faster than most multi-sensor fusion SLAM. We also design a fast GNSS online initialization method and a multi-layer outlier rejection mechanism for our system. In addition, we apply backward propagation for multi-sensor motion compensation to overcome the limitations of fast motion. Finally, comprehensive experiments demonstrate that our system achieves higher accuracy and computational efficiency than the state-of-the-art navigation systems on the latest challenging public datasets, and perform equally well in the real environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信