干旱预报可增强棉花幼苗对后续干旱胁迫的耐受性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yousheng Tian, Zhijun Wang, Panpan Ma, Zengqiang Zhao, Zongming Xie
{"title":"干旱预报可增强棉花幼苗对后续干旱胁迫的耐受性","authors":"Yousheng Tian, Zhijun Wang, Panpan Ma, Zengqiang Zhao, Zongming Xie","doi":"10.1007/s11105-024-01437-6","DOIUrl":null,"url":null,"abstract":"<p>Enhancing water use efficiency is a key strategy to improve drought resistance in cotton. Although drought priming has been recognized for enhancing plant tolerance to drought, its impact on upland cotton remains uncertain. In a pot trial with Xinluzao19, we studied the influence of soil drought and drought priming on seedlings. Primed plants maintained similar height to non-primed ones but showed significant differences in hydrogen peroxide, malondialdehyde, and enzyme activities, indicating improved reactive oxygen species (ROS) homeostasis. Transcriptome analysis revealed 1441 upregulated genes and 12,024 downregulated genes in RD6D compared to D6D. GO enrichment and KEGG metabolic pathway analysis also revealed that numerous stress-related genes and defense pathways were significantly enriched. Some genes linked to ascorbate peroxidase and superoxide dismutase displayed similar expression profiles with enzymatic activities. These insights contribute to enhancing cotton and overall crop productivity, particularly under water-deficit conditions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drought Priming May Enhance the Tolerance of Cotton Seedlings to Subsequent Drought Stress\",\"authors\":\"Yousheng Tian, Zhijun Wang, Panpan Ma, Zengqiang Zhao, Zongming Xie\",\"doi\":\"10.1007/s11105-024-01437-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enhancing water use efficiency is a key strategy to improve drought resistance in cotton. Although drought priming has been recognized for enhancing plant tolerance to drought, its impact on upland cotton remains uncertain. In a pot trial with Xinluzao19, we studied the influence of soil drought and drought priming on seedlings. Primed plants maintained similar height to non-primed ones but showed significant differences in hydrogen peroxide, malondialdehyde, and enzyme activities, indicating improved reactive oxygen species (ROS) homeostasis. Transcriptome analysis revealed 1441 upregulated genes and 12,024 downregulated genes in RD6D compared to D6D. GO enrichment and KEGG metabolic pathway analysis also revealed that numerous stress-related genes and defense pathways were significantly enriched. Some genes linked to ascorbate peroxidase and superoxide dismutase displayed similar expression profiles with enzymatic activities. These insights contribute to enhancing cotton and overall crop productivity, particularly under water-deficit conditions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11105-024-01437-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11105-024-01437-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提高用水效率是改善棉花抗旱性的关键策略。尽管抗旱引种被认为可以提高植物对干旱的耐受性,但其对陆地棉的影响仍不确定。在新陆早19的盆栽试验中,我们研究了土壤干旱和干旱引诱对幼苗的影响。经过抗旱处理的植株与未经过抗旱处理的植株保持了相似的高度,但在过氧化氢、丙二醛和酶活性方面存在显著差异,这表明活性氧(ROS)平衡得到了改善。转录组分析显示,与 D6D 相比,RD6D 中有 1441 个基因上调,12,024 个基因下调。GO富集和KEGG代谢通路分析还显示,许多应激相关基因和防御通路被显著富集。一些与抗坏血酸过氧化物酶和超氧化物歧化酶相关的基因显示出与酶活性相似的表达谱。这些见解有助于提高棉花和作物的整体产量,尤其是在缺水条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Drought Priming May Enhance the Tolerance of Cotton Seedlings to Subsequent Drought Stress

Drought Priming May Enhance the Tolerance of Cotton Seedlings to Subsequent Drought Stress

Enhancing water use efficiency is a key strategy to improve drought resistance in cotton. Although drought priming has been recognized for enhancing plant tolerance to drought, its impact on upland cotton remains uncertain. In a pot trial with Xinluzao19, we studied the influence of soil drought and drought priming on seedlings. Primed plants maintained similar height to non-primed ones but showed significant differences in hydrogen peroxide, malondialdehyde, and enzyme activities, indicating improved reactive oxygen species (ROS) homeostasis. Transcriptome analysis revealed 1441 upregulated genes and 12,024 downregulated genes in RD6D compared to D6D. GO enrichment and KEGG metabolic pathway analysis also revealed that numerous stress-related genes and defense pathways were significantly enriched. Some genes linked to ascorbate peroxidase and superoxide dismutase displayed similar expression profiles with enzymatic activities. These insights contribute to enhancing cotton and overall crop productivity, particularly under water-deficit conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信