无顶点相交循环平面图的极谱结果

IF 0.9 3区 数学 Q2 MATHEMATICS
Longfei Fang, Huiqiu Lin, Yongtang Shi
{"title":"无顶点相交循环平面图的极谱结果","authors":"Longfei Fang,&nbsp;Huiqiu Lin,&nbsp;Yongtang Shi","doi":"10.1002/jgt.23084","DOIUrl":null,"url":null,"abstract":"<p>Given a planar graph family <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e{x}_{{\\mathscr{P}}}(n,{\\mathscr{F}})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,{\\mathscr{F}})$</annotation>\n </semantics></math> be the maximum size and maximum spectral radius over all <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math>-free planar graphs, respectively. Let <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <msub>\n <mi>C</mi>\n <mi>ℓ</mi>\n </msub>\n </mrow>\n <annotation> $t{C}_{\\ell }$</annotation>\n </semantics></math> be the disjoint union of <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math> copies of <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n <annotation> $\\ell $</annotation>\n </semantics></math>-cycles, and <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mi>C</mi>\n </mrow>\n <annotation> $t{\\mathscr{C}}$</annotation>\n </semantics></math> be the family of <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math> vertex-disjoint cycles without length restriction. Tait and Tobin determined that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>2</mn>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{2}+{P}_{n-2}$</annotation>\n </semantics></math> is the extremal spectral graph among all planar graphs with sufficiently large order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, which implies the extremal graphs of both <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>t</mi>\n <msub>\n <mi>C</mi>\n <mi>ℓ</mi>\n </msub>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,t{C}_{\\ell })$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mi>C</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,t{\\mathscr{C}})$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $t\\ge 3$</annotation>\n </semantics></math> are <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>2</mn>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{2}+{P}_{n-2}$</annotation>\n </semantics></math>. In this paper, we first determine <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>t</mi>\n <msub>\n <mi>C</mi>\n <mi>ℓ</mi>\n </msub>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,t{C}_{\\ell })$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mi>C</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,t{\\mathscr{C}})$</annotation>\n </semantics></math> and characterize the unique extremal graph for <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>t</mi>\n <mo>≤</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $1\\le t\\le 2$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $\\ell \\ge 3$</annotation>\n </semantics></math> and sufficiently large <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>. Second, we obtain the exact values of <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mn>2</mn>\n <msub>\n <mi>C</mi>\n <mn>4</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e{x}_{{\\mathscr{P}}}(n,2{C}_{4})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mn>2</mn>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e{x}_{{\\mathscr{P}}}(n,2{\\mathscr{C}})$</annotation>\n </semantics></math>, which solve a conjecture of Li for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>2661</mn>\n </mrow>\n <annotation> $n\\ge 2661$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 3","pages":"496-524"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal spectral results of planar graphs without vertex-disjoint cycles\",\"authors\":\"Longfei Fang,&nbsp;Huiqiu Lin,&nbsp;Yongtang Shi\",\"doi\":\"10.1002/jgt.23084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a planar graph family <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal F} }}$</annotation>\\n </semantics></math>, let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $e{x}_{{\\\\mathscr{P}}}(n,{\\\\mathscr{F}})$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mi>p</mi>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $spe{x}_{{\\\\mathscr{P}}}(n,{\\\\mathscr{F}})$</annotation>\\n </semantics></math> be the maximum size and maximum spectral radius over all <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal F} }}$</annotation>\\n </semantics></math>-free planar graphs, respectively. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <msub>\\n <mi>C</mi>\\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n <annotation> $t{C}_{\\\\ell }$</annotation>\\n </semantics></math> be the disjoint union of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math> copies of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n </mrow>\\n <annotation> $\\\\ell $</annotation>\\n </semantics></math>-cycles, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mi>C</mi>\\n </mrow>\\n <annotation> $t{\\\\mathscr{C}}$</annotation>\\n </semantics></math> be the family of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math> vertex-disjoint cycles without length restriction. Tait and Tobin determined that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mi>P</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{2}+{P}_{n-2}$</annotation>\\n </semantics></math> is the extremal spectral graph among all planar graphs with sufficiently large order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>, which implies the extremal graphs of both <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mi>p</mi>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <msub>\\n <mi>C</mi>\\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $spe{x}_{{\\\\mathscr{P}}}(n,t{C}_{\\\\ell })$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mi>p</mi>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <mi>C</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $spe{x}_{{\\\\mathscr{P}}}(n,t{\\\\mathscr{C}})$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation> $t\\\\ge 3$</annotation>\\n </semantics></math> are <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mi>P</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{2}+{P}_{n-2}$</annotation>\\n </semantics></math>. In this paper, we first determine <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mi>p</mi>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <msub>\\n <mi>C</mi>\\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $spe{x}_{{\\\\mathscr{P}}}(n,t{C}_{\\\\ell })$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mi>p</mi>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <mi>C</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $spe{x}_{{\\\\mathscr{P}}}(n,t{\\\\mathscr{C}})$</annotation>\\n </semantics></math> and characterize the unique extremal graph for <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>t</mi>\\n <mo>≤</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $1\\\\le t\\\\le 2$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation> $\\\\ell \\\\ge 3$</annotation>\\n </semantics></math> and sufficiently large <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>. Second, we obtain the exact values of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mn>2</mn>\\n <msub>\\n <mi>C</mi>\\n <mn>4</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $e{x}_{{\\\\mathscr{P}}}(n,2{C}_{4})$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $e{x}_{{\\\\mathscr{P}}}(n,2{\\\\mathscr{C}})$</annotation>\\n </semantics></math>, which solve a conjecture of Li for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>2661</mn>\\n </mrow>\\n <annotation> $n\\\\ge 2661$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 3\",\"pages\":\"496-524\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23084\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23084","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个平面图族 ,设 和 分别是所有无顶点平面图的最大尺寸和最大谱半径。设 为 - 循环的副本的不相邻联盟,且 为无长度限制的顶点不相邻循环族。Tait 和 Tobin 确定,是所有阶数足够大的平面图中的极值谱图,这意味着 和 的极值图都是 。在本文中,我们首先确定了 和 ,并描述了对于 、 和 足够大的唯一极值图。其次,我们得到了 和 的精确值,从而解决了 Li 对 的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal spectral results of planar graphs without vertex-disjoint cycles

Given a planar graph family F ${\rm{ {\mathcal F} }}$ , let e x P ( n , F ) $e{x}_{{\mathscr{P}}}(n,{\mathscr{F}})$ and s p e x P ( n , F ) $spe{x}_{{\mathscr{P}}}(n,{\mathscr{F}})$ be the maximum size and maximum spectral radius over all n $n$ -vertex F ${\rm{ {\mathcal F} }}$ -free planar graphs, respectively. Let t C $t{C}_{\ell }$ be the disjoint union of t $t$ copies of $\ell $ -cycles, and t C $t{\mathscr{C}}$ be the family of t $t$ vertex-disjoint cycles without length restriction. Tait and Tobin determined that K 2 + P n 2 ${K}_{2}+{P}_{n-2}$ is the extremal spectral graph among all planar graphs with sufficiently large order n $n$ , which implies the extremal graphs of both s p e x P ( n , t C ) $spe{x}_{{\mathscr{P}}}(n,t{C}_{\ell })$ and s p e x P ( n , t C ) $spe{x}_{{\mathscr{P}}}(n,t{\mathscr{C}})$ for t 3 $t\ge 3$ are K 2 + P n 2 ${K}_{2}+{P}_{n-2}$ . In this paper, we first determine s p e x P ( n , t C ) $spe{x}_{{\mathscr{P}}}(n,t{C}_{\ell })$ and s p e x P ( n , t C ) $spe{x}_{{\mathscr{P}}}(n,t{\mathscr{C}})$ and characterize the unique extremal graph for 1 t 2 $1\le t\le 2$ , 3 $\ell \ge 3$ and sufficiently large n $n$ . Second, we obtain the exact values of e x P ( n , 2 C 4 ) $e{x}_{{\mathscr{P}}}(n,2{C}_{4})$ and e x P ( n , 2 C ) $e{x}_{{\mathscr{P}}}(n,2{\mathscr{C}})$ , which solve a conjecture of Li for n 2661 $n\ge 2661$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信