求助PDF
{"title":"无顶点相交循环平面图的极谱结果","authors":"Longfei Fang, Huiqiu Lin, Yongtang Shi","doi":"10.1002/jgt.23084","DOIUrl":null,"url":null,"abstract":"<p>Given a planar graph family <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e{x}_{{\\mathscr{P}}}(n,{\\mathscr{F}})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,{\\mathscr{F}})$</annotation>\n </semantics></math> be the maximum size and maximum spectral radius over all <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math>-free planar graphs, respectively. Let <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <msub>\n <mi>C</mi>\n <mi>ℓ</mi>\n </msub>\n </mrow>\n <annotation> $t{C}_{\\ell }$</annotation>\n </semantics></math> be the disjoint union of <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math> copies of <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n <annotation> $\\ell $</annotation>\n </semantics></math>-cycles, and <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mi>C</mi>\n </mrow>\n <annotation> $t{\\mathscr{C}}$</annotation>\n </semantics></math> be the family of <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math> vertex-disjoint cycles without length restriction. Tait and Tobin determined that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>2</mn>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{2}+{P}_{n-2}$</annotation>\n </semantics></math> is the extremal spectral graph among all planar graphs with sufficiently large order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, which implies the extremal graphs of both <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>t</mi>\n <msub>\n <mi>C</mi>\n <mi>ℓ</mi>\n </msub>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,t{C}_{\\ell })$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mi>C</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,t{\\mathscr{C}})$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $t\\ge 3$</annotation>\n </semantics></math> are <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>2</mn>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{2}+{P}_{n-2}$</annotation>\n </semantics></math>. In this paper, we first determine <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>t</mi>\n <msub>\n <mi>C</mi>\n <mi>ℓ</mi>\n </msub>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,t{C}_{\\ell })$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mi>C</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,t{\\mathscr{C}})$</annotation>\n </semantics></math> and characterize the unique extremal graph for <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>t</mi>\n <mo>≤</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $1\\le t\\le 2$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $\\ell \\ge 3$</annotation>\n </semantics></math> and sufficiently large <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>. Second, we obtain the exact values of <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mn>2</mn>\n <msub>\n <mi>C</mi>\n <mn>4</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e{x}_{{\\mathscr{P}}}(n,2{C}_{4})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mn>2</mn>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e{x}_{{\\mathscr{P}}}(n,2{\\mathscr{C}})$</annotation>\n </semantics></math>, which solve a conjecture of Li for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>2661</mn>\n </mrow>\n <annotation> $n\\ge 2661$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 3","pages":"496-524"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal spectral results of planar graphs without vertex-disjoint cycles\",\"authors\":\"Longfei Fang, Huiqiu Lin, Yongtang Shi\",\"doi\":\"10.1002/jgt.23084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a planar graph family <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal F} }}$</annotation>\\n </semantics></math>, let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $e{x}_{{\\\\mathscr{P}}}(n,{\\\\mathscr{F}})$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mi>p</mi>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $spe{x}_{{\\\\mathscr{P}}}(n,{\\\\mathscr{F}})$</annotation>\\n </semantics></math> be the maximum size and maximum spectral radius over all <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal F} }}$</annotation>\\n </semantics></math>-free planar graphs, respectively. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <msub>\\n <mi>C</mi>\\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n <annotation> $t{C}_{\\\\ell }$</annotation>\\n </semantics></math> be the disjoint union of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math> copies of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n </mrow>\\n <annotation> $\\\\ell $</annotation>\\n </semantics></math>-cycles, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mi>C</mi>\\n </mrow>\\n <annotation> $t{\\\\mathscr{C}}$</annotation>\\n </semantics></math> be the family of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math> vertex-disjoint cycles without length restriction. Tait and Tobin determined that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mi>P</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{2}+{P}_{n-2}$</annotation>\\n </semantics></math> is the extremal spectral graph among all planar graphs with sufficiently large order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>, which implies the extremal graphs of both <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mi>p</mi>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <msub>\\n <mi>C</mi>\\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $spe{x}_{{\\\\mathscr{P}}}(n,t{C}_{\\\\ell })$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mi>p</mi>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <mi>C</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $spe{x}_{{\\\\mathscr{P}}}(n,t{\\\\mathscr{C}})$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation> $t\\\\ge 3$</annotation>\\n </semantics></math> are <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mi>P</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{2}+{P}_{n-2}$</annotation>\\n </semantics></math>. In this paper, we first determine <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mi>p</mi>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <msub>\\n <mi>C</mi>\\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $spe{x}_{{\\\\mathscr{P}}}(n,t{C}_{\\\\ell })$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mi>p</mi>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <mi>C</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $spe{x}_{{\\\\mathscr{P}}}(n,t{\\\\mathscr{C}})$</annotation>\\n </semantics></math> and characterize the unique extremal graph for <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>t</mi>\\n <mo>≤</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $1\\\\le t\\\\le 2$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation> $\\\\ell \\\\ge 3$</annotation>\\n </semantics></math> and sufficiently large <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>. Second, we obtain the exact values of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mn>2</mn>\\n <msub>\\n <mi>C</mi>\\n <mn>4</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $e{x}_{{\\\\mathscr{P}}}(n,2{C}_{4})$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>P</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $e{x}_{{\\\\mathscr{P}}}(n,2{\\\\mathscr{C}})$</annotation>\\n </semantics></math>, which solve a conjecture of Li for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>2661</mn>\\n </mrow>\\n <annotation> $n\\\\ge 2661$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 3\",\"pages\":\"496-524\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23084\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23084","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用