{"title":"小振幅周期性毛细管重力水波","authors":"Qixiang Li, JinRong Wang","doi":"10.1007/s00021-024-00858-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate two-dimensional capillary-gravity water waves of small amplitude, which propagate over a flat bed. We prove the existence of a local curve of solutions by using the Crandall–Rabinowitz local bifurcation theory, and show the uniqueness for the capillary-gravity water waves. Furthermore, we recover the dispersion relation for the constant vorticity setting. Moreover, we present a formal stability result for the bifurcation of the laminar solution. In addition, we prove the analyticity of the free surface.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic Capillary-Gravity Water Waves of Small Amplitude\",\"authors\":\"Qixiang Li, JinRong Wang\",\"doi\":\"10.1007/s00021-024-00858-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate two-dimensional capillary-gravity water waves of small amplitude, which propagate over a flat bed. We prove the existence of a local curve of solutions by using the Crandall–Rabinowitz local bifurcation theory, and show the uniqueness for the capillary-gravity water waves. Furthermore, we recover the dispersion relation for the constant vorticity setting. Moreover, we present a formal stability result for the bifurcation of the laminar solution. In addition, we prove the analyticity of the free surface.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00858-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00858-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Periodic Capillary-Gravity Water Waves of Small Amplitude
In this paper, we investigate two-dimensional capillary-gravity water waves of small amplitude, which propagate over a flat bed. We prove the existence of a local curve of solutions by using the Crandall–Rabinowitz local bifurcation theory, and show the uniqueness for the capillary-gravity water waves. Furthermore, we recover the dispersion relation for the constant vorticity setting. Moreover, we present a formal stability result for the bifurcation of the laminar solution. In addition, we prove the analyticity of the free surface.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.