罗塔-巴克斯特列双桥、经典杨-巴克斯特方程和特殊 L-树枝状双桥

Pub Date : 2024-02-28 DOI:10.1007/s10468-024-10261-1
Chengming Bai, Li Guo, Guilai Liu, Tianshui Ma
{"title":"罗塔-巴克斯特列双桥、经典杨-巴克斯特方程和特殊 L-树枝状双桥","authors":"Chengming Bai,&nbsp;Li Guo,&nbsp;Guilai Liu,&nbsp;Tianshui Ma","doi":"10.1007/s10468-024-10261-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper extends the well-known fact that a Rota-Baxter operator of weight 0 on a Lie algebra induces a pre-Lie algebra, to the level of bialgebras. We first show that a nondegenerate symmetric bilinear form that is invariant on a Rota-Baxter Lie algebra of weight 0 gives such a form that is left-invariant on the induced pre-Lie algebra and thereby gives a special L-dendriform algebra. This fact is obtained as a special case of Rota-Baxter Lie algebras with an adjoint-admissible condition, for a representation of the Lie algebra to admit a representation of the Rota-Baxter Lie algebra on the dual space. This condition can also be naturally formulated for Manin triples of Rota-Baxter Lie algebras, which can in turn be characterized in terms of bialgebras, thereby extending the Manin triple approach to Lie bialgebras. In the case of weight 0, the resulting Rota-Baxter Lie bialgebras give rise to special L-dendriform bialgebras, lifting the aforementioned connection that a Rota-Baxter Lie algebra induces a pre-Lie algebra to the level of bialgebras. The relationship between these two classes of bialgebras is also studied in terms of the coboundary cases, classical Yang-Baxter equations and <span>\\(\\mathcal {O}\\)</span>-operators.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rota-Baxter Lie bialgebras, classical Yang-Baxter equations and special L-dendriform bialgebras\",\"authors\":\"Chengming Bai,&nbsp;Li Guo,&nbsp;Guilai Liu,&nbsp;Tianshui Ma\",\"doi\":\"10.1007/s10468-024-10261-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper extends the well-known fact that a Rota-Baxter operator of weight 0 on a Lie algebra induces a pre-Lie algebra, to the level of bialgebras. We first show that a nondegenerate symmetric bilinear form that is invariant on a Rota-Baxter Lie algebra of weight 0 gives such a form that is left-invariant on the induced pre-Lie algebra and thereby gives a special L-dendriform algebra. This fact is obtained as a special case of Rota-Baxter Lie algebras with an adjoint-admissible condition, for a representation of the Lie algebra to admit a representation of the Rota-Baxter Lie algebra on the dual space. This condition can also be naturally formulated for Manin triples of Rota-Baxter Lie algebras, which can in turn be characterized in terms of bialgebras, thereby extending the Manin triple approach to Lie bialgebras. In the case of weight 0, the resulting Rota-Baxter Lie bialgebras give rise to special L-dendriform bialgebras, lifting the aforementioned connection that a Rota-Baxter Lie algebra induces a pre-Lie algebra to the level of bialgebras. The relationship between these two classes of bialgebras is also studied in terms of the coboundary cases, classical Yang-Baxter equations and <span>\\\\(\\\\mathcal {O}\\\\)</span>-operators.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10261-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10261-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文将一个众所周知的事实,即在一个李代数上权重为 0 的罗塔-巴克斯特算子会诱导出一个前李代数,扩展到双桥的层面。我们首先证明,在权重为 0 的 Rota-Baxter 列代数上不变的非enerate 对称双线性形式,在诱导的前列代数上是左不变的,从而给出了一个特殊的 L-dendriform 代数。这一事实是作为罗塔-巴克斯特李代数的一个特例得到的,罗塔-巴克斯特李代数有一个邻接容许条件,即李代数的表示要容许罗塔-巴克斯特李代数在对偶空间上的表示。这个条件也可以自然地表述为罗塔-巴克斯特李代数的马宁三元组,而马宁三元组又可以用双桥来表征,从而将马宁三元组方法扩展到了李双桥。在权重为 0 的情况下,所得到的罗塔-巴克斯特列双桥会产生特殊的 L-dendriform 双桥,从而将前文提到的罗塔-巴克斯特列代数诱导前列代数的联系提升到双桥的层次。我们还从共边界情况、经典杨-巴克斯特方程和 \(\mathcal {O}\) -operators 的角度研究了这两类双桥之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Rota-Baxter Lie bialgebras, classical Yang-Baxter equations and special L-dendriform bialgebras

This paper extends the well-known fact that a Rota-Baxter operator of weight 0 on a Lie algebra induces a pre-Lie algebra, to the level of bialgebras. We first show that a nondegenerate symmetric bilinear form that is invariant on a Rota-Baxter Lie algebra of weight 0 gives such a form that is left-invariant on the induced pre-Lie algebra and thereby gives a special L-dendriform algebra. This fact is obtained as a special case of Rota-Baxter Lie algebras with an adjoint-admissible condition, for a representation of the Lie algebra to admit a representation of the Rota-Baxter Lie algebra on the dual space. This condition can also be naturally formulated for Manin triples of Rota-Baxter Lie algebras, which can in turn be characterized in terms of bialgebras, thereby extending the Manin triple approach to Lie bialgebras. In the case of weight 0, the resulting Rota-Baxter Lie bialgebras give rise to special L-dendriform bialgebras, lifting the aforementioned connection that a Rota-Baxter Lie algebra induces a pre-Lie algebra to the level of bialgebras. The relationship between these two classes of bialgebras is also studied in terms of the coboundary cases, classical Yang-Baxter equations and \(\mathcal {O}\)-operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信