微酸性电解水作为潜在消毒剂在食品工业中的应用

IF 2.6 3区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Abdulsudi Issa-Zacharia
{"title":"微酸性电解水作为潜在消毒剂在食品工业中的应用","authors":"Abdulsudi Issa-Zacharia","doi":"10.1155/2024/5559753","DOIUrl":null,"url":null,"abstract":"<p>The food industry has extensively explored postharvest microbial control, seeking viable technologies to ensure food safety. Although numerous chlorine-based commercial sanitizers serve this purpose, many are plagued by constraints such as instability and diminished disinfectant efficacy. These issues arise from exposure to organic matter in wash water, light, or air. As an innovative and promising alternative, slightly acidic electrolyzed water (SAEW) has emerged, captivating attention for its robust sterilization potential and eco-friendliness in agricultural and food sectors. SAEW generated via electrolysis of a diluted hydrochloric acid (HCl) solution with concentrations ranging from 2 to 6% or aqueous solution of sodium chloride (NaCl) in a nonmembrane electrolytic chamber is reported to possess equivalent antimicrobial properties as strong acidic electrolyzed water (StAEW). In contrast to traditional chlorine sanitizers, SAEW leaves less chlorine residue on sanitized foods such fresh-cut fruit and vegetables, meat, poultry, and aquatic products due to its low available chlorine concentration (ACC). Its near neutral pH of 5 to 6.5 not only renders it environmentally benign but also mitigates the production of chlorine gas, a contrast to low pH conditions seen in StAEW generation. The bactericidal effect of SAEW against various strains of foodborne pathogens is widely believed and accepted to be due to the combined action of high oxidation-reduction-potential (ORP) reactions and undissociated hypochlorite/hypochlorous acid (HOCl). Consequently, a burgeoning interest surrounds the potential of SAEW for sanitation in the food industry, offering an alternative to address shortcomings in sodium hypochlorite solutions and even StAEW. It has been hypothesized from a number of studies that SAEW treatment can increase the quality and nutritional value of harvested fruits, which in turn may enhance their ability to be stored. Therefore, SAEW is not only a promising sanitizer in the food industry but also has the potential to be an efficient strategy for encouraging the accumulation of bioactive chemicals in plants, especially if it is used extensively. This review encapsulates the latest insights concerning SAEW, encompassing its antimicrobial effectiveness, sanitization mechanism, advantages vis-à-vis other sanitizers, and plausible applications across the food industry.</p>","PeriodicalId":15951,"journal":{"name":"Journal of Food Quality","volume":"2024 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Slightly Acidic Electrolyzed Water as a Potential Sanitizer in the Food Industry\",\"authors\":\"Abdulsudi Issa-Zacharia\",\"doi\":\"10.1155/2024/5559753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The food industry has extensively explored postharvest microbial control, seeking viable technologies to ensure food safety. Although numerous chlorine-based commercial sanitizers serve this purpose, many are plagued by constraints such as instability and diminished disinfectant efficacy. These issues arise from exposure to organic matter in wash water, light, or air. As an innovative and promising alternative, slightly acidic electrolyzed water (SAEW) has emerged, captivating attention for its robust sterilization potential and eco-friendliness in agricultural and food sectors. SAEW generated via electrolysis of a diluted hydrochloric acid (HCl) solution with concentrations ranging from 2 to 6% or aqueous solution of sodium chloride (NaCl) in a nonmembrane electrolytic chamber is reported to possess equivalent antimicrobial properties as strong acidic electrolyzed water (StAEW). In contrast to traditional chlorine sanitizers, SAEW leaves less chlorine residue on sanitized foods such fresh-cut fruit and vegetables, meat, poultry, and aquatic products due to its low available chlorine concentration (ACC). Its near neutral pH of 5 to 6.5 not only renders it environmentally benign but also mitigates the production of chlorine gas, a contrast to low pH conditions seen in StAEW generation. The bactericidal effect of SAEW against various strains of foodborne pathogens is widely believed and accepted to be due to the combined action of high oxidation-reduction-potential (ORP) reactions and undissociated hypochlorite/hypochlorous acid (HOCl). Consequently, a burgeoning interest surrounds the potential of SAEW for sanitation in the food industry, offering an alternative to address shortcomings in sodium hypochlorite solutions and even StAEW. It has been hypothesized from a number of studies that SAEW treatment can increase the quality and nutritional value of harvested fruits, which in turn may enhance their ability to be stored. Therefore, SAEW is not only a promising sanitizer in the food industry but also has the potential to be an efficient strategy for encouraging the accumulation of bioactive chemicals in plants, especially if it is used extensively. This review encapsulates the latest insights concerning SAEW, encompassing its antimicrobial effectiveness, sanitization mechanism, advantages vis-à-vis other sanitizers, and plausible applications across the food industry.</p>\",\"PeriodicalId\":15951,\"journal\":{\"name\":\"Journal of Food Quality\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Quality\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5559753\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Quality","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5559753","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

食品工业对收获后微生物控制进行了广泛的探索,寻求可行的技术来确保食品安全。虽然许多氯基商用消毒剂都能达到这一目的,但许多消毒剂都存在不稳定和消毒效果下降等问题。这些问题都是由于暴露于清洗水中的有机物、光线或空气而引起的。微酸性电解水(SAEW)作为一种创新且前景广阔的替代品应运而生,因其强大的杀菌潜力以及在农业和食品领域的生态友好性而备受关注。据报道,微酸性电解水(SAEW)是在无膜电解室中通过电解浓度为 2% 至 6% 的稀盐酸(HCl)溶液或氯化钠(NaCl)水溶液产生的,具有与强酸性电解水(StAEW)同等的抗菌特性。与传统的氯消毒剂相比,由于 SAEW 的可用氯浓度(ACC)较低,因此在新鲜水果和蔬菜、肉类、家禽和水产品等消毒食品上残留的氯较少。它的 pH 值接近中性(5 至 6.5),不仅对环境无害,还能减少氯气的产生,这与 StAEW 产生过程中的低 pH 值条件形成鲜明对比。人们普遍认为,SAEW 对各种食源性病原体菌株的杀菌作用是由于高氧化还原电位(ORP)反应和未析出次氯酸盐/次氯酸(HOCl)的共同作用。因此,人们对 SAEW 在食品工业卫生方面的潜力产生了浓厚的兴趣,它为解决次氯酸钠溶液甚至 StAEW 的缺点提供了一种替代方法。许多研究推测,SAEW 处理可提高采收水果的质量和营养价值,进而增强其贮藏能力。因此,SAEW 不仅在食品工业中是一种前景广阔的消毒剂,而且还有可能成为促进植物体内生物活性化学物质积累的有效策略,尤其是在广泛使用的情况下。本综述概述了有关 SAEW 的最新见解,包括其抗菌效果、消毒机制、与其他消毒剂相比的优势以及在食品工业中的合理应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Slightly Acidic Electrolyzed Water as a Potential Sanitizer in the Food Industry

The food industry has extensively explored postharvest microbial control, seeking viable technologies to ensure food safety. Although numerous chlorine-based commercial sanitizers serve this purpose, many are plagued by constraints such as instability and diminished disinfectant efficacy. These issues arise from exposure to organic matter in wash water, light, or air. As an innovative and promising alternative, slightly acidic electrolyzed water (SAEW) has emerged, captivating attention for its robust sterilization potential and eco-friendliness in agricultural and food sectors. SAEW generated via electrolysis of a diluted hydrochloric acid (HCl) solution with concentrations ranging from 2 to 6% or aqueous solution of sodium chloride (NaCl) in a nonmembrane electrolytic chamber is reported to possess equivalent antimicrobial properties as strong acidic electrolyzed water (StAEW). In contrast to traditional chlorine sanitizers, SAEW leaves less chlorine residue on sanitized foods such fresh-cut fruit and vegetables, meat, poultry, and aquatic products due to its low available chlorine concentration (ACC). Its near neutral pH of 5 to 6.5 not only renders it environmentally benign but also mitigates the production of chlorine gas, a contrast to low pH conditions seen in StAEW generation. The bactericidal effect of SAEW against various strains of foodborne pathogens is widely believed and accepted to be due to the combined action of high oxidation-reduction-potential (ORP) reactions and undissociated hypochlorite/hypochlorous acid (HOCl). Consequently, a burgeoning interest surrounds the potential of SAEW for sanitation in the food industry, offering an alternative to address shortcomings in sodium hypochlorite solutions and even StAEW. It has been hypothesized from a number of studies that SAEW treatment can increase the quality and nutritional value of harvested fruits, which in turn may enhance their ability to be stored. Therefore, SAEW is not only a promising sanitizer in the food industry but also has the potential to be an efficient strategy for encouraging the accumulation of bioactive chemicals in plants, especially if it is used extensively. This review encapsulates the latest insights concerning SAEW, encompassing its antimicrobial effectiveness, sanitization mechanism, advantages vis-à-vis other sanitizers, and plausible applications across the food industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Quality
Journal of Food Quality 工程技术-食品科技
CiteScore
5.90
自引率
6.10%
发文量
285
审稿时长
>36 weeks
期刊介绍: Journal of Food Quality is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles related to all aspects of food quality characteristics acceptable to consumers. The journal aims to provide a valuable resource for food scientists, nutritionists, food producers, the public health sector, and governmental and non-governmental agencies with an interest in food quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信