基于广义开尔文链的正交粘弹性材料模型

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
M. Trcala, P. Suchomelová, M. Bošanský, F. Hokeš, I. Němec
{"title":"基于广义开尔文链的正交粘弹性材料模型","authors":"M. Trcala,&nbsp;P. Suchomelová,&nbsp;M. Bošanský,&nbsp;F. Hokeš,&nbsp;I. Němec","doi":"10.1007/s11043-024-09678-4","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a constitutive material model to describe the rheological (viscoelastic) mechanical response of timber. The viscoelastic model is based on the generalized Kelvin chain applied to the orthotropic material and is compared to the simple approach given by standards. The contribution of this study consists of the algorithmization of the viscoelastic material model of the material applied to the orthotropic constitutive law and implementation into the FEM solver. In the next step, the fitting of the input parameters of the Kelvin chain is described, and at least a material model benchmark and comparison to the approach given by standards were done. The standardized approach is based on the reduction of the material rigidity at the end of the loading period using a creep coefficient, whereas the loading history state variables are not considered when establishing the result for a specific time step. The paper presents the benefits of the rheological model. It also demonstrates the fitting algorithm based on particle swarm optimization and the least squares method, which are essential for the use of the generalized Kelvin chain model. The material model based on the orthotropic generalized Kelvin chain was implemented into the FEM solver for the shell elements. This material model was validated on the presented benchmark tasks, and the influence of the time step size on the accuracy of model results was analyzed.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1639 - 1659"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11043-024-09678-4.pdf","citationCount":"0","resultStr":"{\"title\":\"The generalized Kelvin chain-based model for an orthotropic viscoelastic material\",\"authors\":\"M. Trcala,&nbsp;P. Suchomelová,&nbsp;M. Bošanský,&nbsp;F. Hokeš,&nbsp;I. Němec\",\"doi\":\"10.1007/s11043-024-09678-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a constitutive material model to describe the rheological (viscoelastic) mechanical response of timber. The viscoelastic model is based on the generalized Kelvin chain applied to the orthotropic material and is compared to the simple approach given by standards. The contribution of this study consists of the algorithmization of the viscoelastic material model of the material applied to the orthotropic constitutive law and implementation into the FEM solver. In the next step, the fitting of the input parameters of the Kelvin chain is described, and at least a material model benchmark and comparison to the approach given by standards were done. The standardized approach is based on the reduction of the material rigidity at the end of the loading period using a creep coefficient, whereas the loading history state variables are not considered when establishing the result for a specific time step. The paper presents the benefits of the rheological model. It also demonstrates the fitting algorithm based on particle swarm optimization and the least squares method, which are essential for the use of the generalized Kelvin chain model. The material model based on the orthotropic generalized Kelvin chain was implemented into the FEM solver for the shell elements. This material model was validated on the presented benchmark tasks, and the influence of the time step size on the accuracy of model results was analyzed.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"28 3\",\"pages\":\"1639 - 1659\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11043-024-09678-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-024-09678-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09678-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们提出了一种材料构成模型来描述木材的流变(粘弹性)机械响应。粘弹性模型基于应用于正交材料的广义开尔文链,并与标准给出的简单方法进行了比较。本研究的贡献在于将粘弹性材料模型的算法应用于正交各向同性结构定律,并将其应用于有限元求解器。下一步是描述开尔文链输入参数的拟合,至少完成了材料模型基准和与标准方法的比较。标准方法基于在加载期结束时使用蠕变系数降低材料刚度,而在确定特定时间步的结果时不考虑加载历史状态变量。本文介绍了流变模型的优点。论文还演示了基于粒子群优化和最小二乘法的拟合算法,这对使用广义开尔文链模型至关重要。基于正交广义开尔文链的材料模型已在壳元素有限元求解器中实施。该材料模型在提出的基准任务中进行了验证,并分析了时间步长对模型结果精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The generalized Kelvin chain-based model for an orthotropic viscoelastic material

We propose a constitutive material model to describe the rheological (viscoelastic) mechanical response of timber. The viscoelastic model is based on the generalized Kelvin chain applied to the orthotropic material and is compared to the simple approach given by standards. The contribution of this study consists of the algorithmization of the viscoelastic material model of the material applied to the orthotropic constitutive law and implementation into the FEM solver. In the next step, the fitting of the input parameters of the Kelvin chain is described, and at least a material model benchmark and comparison to the approach given by standards were done. The standardized approach is based on the reduction of the material rigidity at the end of the loading period using a creep coefficient, whereas the loading history state variables are not considered when establishing the result for a specific time step. The paper presents the benefits of the rheological model. It also demonstrates the fitting algorithm based on particle swarm optimization and the least squares method, which are essential for the use of the generalized Kelvin chain model. The material model based on the orthotropic generalized Kelvin chain was implemented into the FEM solver for the shell elements. This material model was validated on the presented benchmark tasks, and the influence of the time step size on the accuracy of model results was analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信