环、可表示为两个有效矩阵之和的矩阵

IF 0.5 Q3 MATHEMATICS
{"title":"环、可表示为两个有效矩阵之和的矩阵","authors":"","doi":"10.3103/s1066369x23120022","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>This paper investigates conditions under which representability of each element <span> <span>\\(a\\)</span> </span> from the field <span> <span>\\(P\\)</span> </span> as the sum <span> <span>\\(a = f + g\\)</span> </span>, where <span> <span>\\({{f}^{{{{q}_{1}}}}} = f\\)</span> </span>, <span> <span>\\({{g}^{{{{q}_{2}}}}} = g\\)</span> </span>, and <span> <span>\\({{q}_{1}},{{q}_{2}}\\)</span> </span> are fixed natural numbers &gt;1, implies a similar representability of each square matrix over the field <span> <span>\\(P\\)</span> </span>. We propose a general approach to solving this problem. As an application we describe fields and commutative rings where 2 is a unit, over which each square matrix is the sum of two 4-potent matrices.</p> </span>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"35 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rings, Matrices over Which Are Representable As the Sum of Two Potent Matrices\",\"authors\":\"\",\"doi\":\"10.3103/s1066369x23120022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span> <h3>Abstract</h3> <p>This paper investigates conditions under which representability of each element <span> <span>\\\\(a\\\\)</span> </span> from the field <span> <span>\\\\(P\\\\)</span> </span> as the sum <span> <span>\\\\(a = f + g\\\\)</span> </span>, where <span> <span>\\\\({{f}^{{{{q}_{1}}}}} = f\\\\)</span> </span>, <span> <span>\\\\({{g}^{{{{q}_{2}}}}} = g\\\\)</span> </span>, and <span> <span>\\\\({{q}_{1}},{{q}_{2}}\\\\)</span> </span> are fixed natural numbers &gt;1, implies a similar representability of each square matrix over the field <span> <span>\\\\(P\\\\)</span> </span>. We propose a general approach to solving this problem. As an application we describe fields and commutative rings where 2 is a unit, over which each square matrix is the sum of two 4-potent matrices.</p> </span>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x23120022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23120022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract This paper investigates conditions under which representability of each element \(a\) from the field \(P\) as the sum \(a = f + g\) , where \({{f}^{{{{q}_{1}}}}} = f\) , \({{g}^{{{{q}_{2}}}}} = g\) , and \({{q}_{1}},{{q}_{2}}\) are fixed natural numbers >;1,意味着每个方阵在 \(P\) 域上都有类似的可表示性。我们提出了解决这个问题的一般方法。作为应用,我们描述了以 2 为单位的域和交换环,在这些域和交换环上,每个平方矩阵都是两个 4 实矩阵之和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rings, Matrices over Which Are Representable As the Sum of Two Potent Matrices

Abstract

This paper investigates conditions under which representability of each element \(a\) from the field \(P\) as the sum \(a = f + g\) , where \({{f}^{{{{q}_{1}}}}} = f\) , \({{g}^{{{{q}_{2}}}}} = g\) , and \({{q}_{1}},{{q}_{2}}\) are fixed natural numbers >1, implies a similar representability of each square matrix over the field \(P\) . We propose a general approach to solving this problem. As an application we describe fields and commutative rings where 2 is a unit, over which each square matrix is the sum of two 4-potent matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信