三阶摩尔-吉布森-汤普森方程中的卷积核确定问题

IF 0.5 Q3 MATHEMATICS
D. K. Durdiev, A. A. Boltaev, A. A. Rahmonov
{"title":"三阶摩尔-吉布森-汤普森方程中的卷积核确定问题","authors":"D. K. Durdiev, A. A. Boltaev, A. A. Rahmonov","doi":"10.3103/s1066369x23120034","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This article is concerned with the study of the inverse problem of determining the difference kernel in a Volterra type integral term function in the third-order Moore–Gibson–Thompson (MGT) equation. First, the initial-boundary value problem is reduced to an equivalent problem. Using the Fourier spectral method, the equivalent problem is reduced to a system of integral equations. The existence and uniqueness of the solution to the integral equations are proved. The obtained solution to the integral equations of Volterra-type is also the unique solution to the equivalent problem. Based on the equivalence of the problems, the theorem of the existence and uniqueness of the classical solutions of the original inverse problem is proved.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"82 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolution Kernel Determination Problem in the Third Order Moore–Gibson–Thompson Equation\",\"authors\":\"D. K. Durdiev, A. A. Boltaev, A. A. Rahmonov\",\"doi\":\"10.3103/s1066369x23120034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>This article is concerned with the study of the inverse problem of determining the difference kernel in a Volterra type integral term function in the third-order Moore–Gibson–Thompson (MGT) equation. First, the initial-boundary value problem is reduced to an equivalent problem. Using the Fourier spectral method, the equivalent problem is reduced to a system of integral equations. The existence and uniqueness of the solution to the integral equations are proved. The obtained solution to the integral equations of Volterra-type is also the unique solution to the equivalent problem. Based on the equivalence of the problems, the theorem of the existence and uniqueness of the classical solutions of the original inverse problem is proved.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x23120034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23120034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文主要研究三阶摩尔-吉布森-汤普森(MGT)方程中 Volterra 型积分项函数的差分核的逆问题。首先,初界值问题被简化为等价问题。利用傅立叶谱方法,等效问题被简化为一个积分方程组。证明了积分方程解的存在性和唯一性。所得到的 Volterra 型积分方程的解也是等价问题的唯一解。基于问题的等价性,证明了原始逆问题经典解的存在性和唯一性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolution Kernel Determination Problem in the Third Order Moore–Gibson–Thompson Equation

Abstract

This article is concerned with the study of the inverse problem of determining the difference kernel in a Volterra type integral term function in the third-order Moore–Gibson–Thompson (MGT) equation. First, the initial-boundary value problem is reduced to an equivalent problem. Using the Fourier spectral method, the equivalent problem is reduced to a system of integral equations. The existence and uniqueness of the solution to the integral equations are proved. The obtained solution to the integral equations of Volterra-type is also the unique solution to the equivalent problem. Based on the equivalence of the problems, the theorem of the existence and uniqueness of the classical solutions of the original inverse problem is proved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信