{"title":"论函数的最优插值","authors":"","doi":"10.3103/s1066369x23120071","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>The construction of optimal interpolation formulas is discussed. First, an exact upper bound for the error of an interpolation formula in the Sobolev space is calculated. The existence and uniqueness are proved for the optimal interpolation formula with the smallest error. An algorithm for finding the coefficients of the optimal interpolation formula is presented. This algorithm makes it possible to find the optimal coefficients.</p> </span>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"3 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Optimal Interpolation of Functions\",\"authors\":\"\",\"doi\":\"10.3103/s1066369x23120071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span> <h3>Abstract</h3> <p>The construction of optimal interpolation formulas is discussed. First, an exact upper bound for the error of an interpolation formula in the Sobolev space is calculated. The existence and uniqueness are proved for the optimal interpolation formula with the smallest error. An algorithm for finding the coefficients of the optimal interpolation formula is presented. This algorithm makes it possible to find the optimal coefficients.</p> </span>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x23120071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23120071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The construction of optimal interpolation formulas is discussed. First, an exact upper bound for the error of an interpolation formula in the Sobolev space is calculated. The existence and uniqueness are proved for the optimal interpolation formula with the smallest error. An algorithm for finding the coefficients of the optimal interpolation formula is presented. This algorithm makes it possible to find the optimal coefficients.