{"title":"回顾过去:讲述细菌如何发现冰核;1963 年至约 20 世纪 80 年代中期。第二部分。扩大范围","authors":"Russell C. Schnell, Gabor Vali","doi":"10.1175/bams-d-23-0115.1","DOIUrl":null,"url":null,"abstract":"Abstract In Part 1 (Vali and Schnell, 2024; VS24) we described the discoveries we and our associates made in the 1960s and 1970s about biological ice nucleators (bio-INPs). Bio-INPs are far more effective than mineral INPs at temperatures above −10°C. The bio-INPs were found in decayed vegetation and in ocean water, then bacteria were identified as being the most active source for this remarkable activity. In this Part 2, we recount how, within a few years, the worldwide distribution of bio-INP sources was shown to correlate with climate zones, as was the abundance of INPs in precipitation. Oceanic sources were further studied and the presence of bio-INPs in fog diagnosed. The potential for release of bio-INPs from to the atmosphere was demonstrated. Bacterial INPs were found to play a crucial role in a plant’s frost resistance. These and other early developments of biological INPs are described. A bibliography of related recent literature is presented in the online Part 1 Supplemental Material.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Looking back: An account of how ice nucleation by bacteria was discovered; 1963 to about mid-1980s. Part 2. Broadening the scope\",\"authors\":\"Russell C. Schnell, Gabor Vali\",\"doi\":\"10.1175/bams-d-23-0115.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In Part 1 (Vali and Schnell, 2024; VS24) we described the discoveries we and our associates made in the 1960s and 1970s about biological ice nucleators (bio-INPs). Bio-INPs are far more effective than mineral INPs at temperatures above −10°C. The bio-INPs were found in decayed vegetation and in ocean water, then bacteria were identified as being the most active source for this remarkable activity. In this Part 2, we recount how, within a few years, the worldwide distribution of bio-INP sources was shown to correlate with climate zones, as was the abundance of INPs in precipitation. Oceanic sources were further studied and the presence of bio-INPs in fog diagnosed. The potential for release of bio-INPs from to the atmosphere was demonstrated. Bacterial INPs were found to play a crucial role in a plant’s frost resistance. These and other early developments of biological INPs are described. A bibliography of related recent literature is presented in the online Part 1 Supplemental Material.\",\"PeriodicalId\":9464,\"journal\":{\"name\":\"Bulletin of the American Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/bams-d-23-0115.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/bams-d-23-0115.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Looking back: An account of how ice nucleation by bacteria was discovered; 1963 to about mid-1980s. Part 2. Broadening the scope
Abstract In Part 1 (Vali and Schnell, 2024; VS24) we described the discoveries we and our associates made in the 1960s and 1970s about biological ice nucleators (bio-INPs). Bio-INPs are far more effective than mineral INPs at temperatures above −10°C. The bio-INPs were found in decayed vegetation and in ocean water, then bacteria were identified as being the most active source for this remarkable activity. In this Part 2, we recount how, within a few years, the worldwide distribution of bio-INP sources was shown to correlate with climate zones, as was the abundance of INPs in precipitation. Oceanic sources were further studied and the presence of bio-INPs in fog diagnosed. The potential for release of bio-INPs from to the atmosphere was demonstrated. Bacterial INPs were found to play a crucial role in a plant’s frost resistance. These and other early developments of biological INPs are described. A bibliography of related recent literature is presented in the online Part 1 Supplemental Material.
期刊介绍:
The Bulletin of the American Meteorological Society (BAMS) is the flagship magazine of AMS and publishes articles of interest and significance for the weather, water, and climate community as well as news, editorials, and reviews for AMS members.