{"title":"一维界面问题的统一沉浸式有限元误差分析","authors":"Slimane Adjerid, Tao Lin, Haroun Meghaichi","doi":"10.1007/s10543-024-01014-z","DOIUrl":null,"url":null,"abstract":"<p>It has been known that the traditional scaling argument cannot be directly applied to the error analysis of immersed finite elements (IFE) because, in general, the spaces on the reference element associated with the IFE spaces on different interface elements via the standard affine mapping are not the same. By analyzing a mapping from the involved Sobolev space to the IFE space, this article is able to extend the scaling argument framework to the error estimation for the approximation capability of a class of IFE spaces in one spatial dimension. As demonstrations of the versatility of this unified error analysis framework, the manuscript applies the proposed scaling argument to obtain optimal IFE error estimates for a typical first-order linear hyperbolic interface problem, a second-order elliptic interface problem, and the fourth-order Euler-Bernoulli beam interface problem, respectively.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"28 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified immersed finite element error analysis for one-dimensional interface problems\",\"authors\":\"Slimane Adjerid, Tao Lin, Haroun Meghaichi\",\"doi\":\"10.1007/s10543-024-01014-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It has been known that the traditional scaling argument cannot be directly applied to the error analysis of immersed finite elements (IFE) because, in general, the spaces on the reference element associated with the IFE spaces on different interface elements via the standard affine mapping are not the same. By analyzing a mapping from the involved Sobolev space to the IFE space, this article is able to extend the scaling argument framework to the error estimation for the approximation capability of a class of IFE spaces in one spatial dimension. As demonstrations of the versatility of this unified error analysis framework, the manuscript applies the proposed scaling argument to obtain optimal IFE error estimates for a typical first-order linear hyperbolic interface problem, a second-order elliptic interface problem, and the fourth-order Euler-Bernoulli beam interface problem, respectively.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01014-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01014-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A unified immersed finite element error analysis for one-dimensional interface problems
It has been known that the traditional scaling argument cannot be directly applied to the error analysis of immersed finite elements (IFE) because, in general, the spaces on the reference element associated with the IFE spaces on different interface elements via the standard affine mapping are not the same. By analyzing a mapping from the involved Sobolev space to the IFE space, this article is able to extend the scaling argument framework to the error estimation for the approximation capability of a class of IFE spaces in one spatial dimension. As demonstrations of the versatility of this unified error analysis framework, the manuscript applies the proposed scaling argument to obtain optimal IFE error estimates for a typical first-order linear hyperbolic interface problem, a second-order elliptic interface problem, and the fourth-order Euler-Bernoulli beam interface problem, respectively.
期刊介绍:
The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.