{"title":"一维界面问题的统一沉浸式有限元误差分析","authors":"Slimane Adjerid, Tao Lin, Haroun Meghaichi","doi":"10.1007/s10543-024-01014-z","DOIUrl":null,"url":null,"abstract":"<p>It has been known that the traditional scaling argument cannot be directly applied to the error analysis of immersed finite elements (IFE) because, in general, the spaces on the reference element associated with the IFE spaces on different interface elements via the standard affine mapping are not the same. By analyzing a mapping from the involved Sobolev space to the IFE space, this article is able to extend the scaling argument framework to the error estimation for the approximation capability of a class of IFE spaces in one spatial dimension. As demonstrations of the versatility of this unified error analysis framework, the manuscript applies the proposed scaling argument to obtain optimal IFE error estimates for a typical first-order linear hyperbolic interface problem, a second-order elliptic interface problem, and the fourth-order Euler-Bernoulli beam interface problem, respectively.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified immersed finite element error analysis for one-dimensional interface problems\",\"authors\":\"Slimane Adjerid, Tao Lin, Haroun Meghaichi\",\"doi\":\"10.1007/s10543-024-01014-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It has been known that the traditional scaling argument cannot be directly applied to the error analysis of immersed finite elements (IFE) because, in general, the spaces on the reference element associated with the IFE spaces on different interface elements via the standard affine mapping are not the same. By analyzing a mapping from the involved Sobolev space to the IFE space, this article is able to extend the scaling argument framework to the error estimation for the approximation capability of a class of IFE spaces in one spatial dimension. As demonstrations of the versatility of this unified error analysis framework, the manuscript applies the proposed scaling argument to obtain optimal IFE error estimates for a typical first-order linear hyperbolic interface problem, a second-order elliptic interface problem, and the fourth-order Euler-Bernoulli beam interface problem, respectively.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01014-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01014-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A unified immersed finite element error analysis for one-dimensional interface problems
It has been known that the traditional scaling argument cannot be directly applied to the error analysis of immersed finite elements (IFE) because, in general, the spaces on the reference element associated with the IFE spaces on different interface elements via the standard affine mapping are not the same. By analyzing a mapping from the involved Sobolev space to the IFE space, this article is able to extend the scaling argument framework to the error estimation for the approximation capability of a class of IFE spaces in one spatial dimension. As demonstrations of the versatility of this unified error analysis framework, the manuscript applies the proposed scaling argument to obtain optimal IFE error estimates for a typical first-order linear hyperbolic interface problem, a second-order elliptic interface problem, and the fourth-order Euler-Bernoulli beam interface problem, respectively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.