Simona Di Meo;Giulia Matrone;Giovanni Magenes;Marco Pasian
{"title":"低成本制作高达 40 千兆赫的组织仿真皮肤模型","authors":"Simona Di Meo;Giulia Matrone;Giovanni Magenes;Marco Pasian","doi":"10.1109/JERM.2024.3349851","DOIUrl":null,"url":null,"abstract":"<italic>Objectives:</i>\n In this paper, a simple methodology for making skin phantoms is presented. In addition, the first millimeter (mm)-wave images in scenarios including the skin phantoms are shown. \n<italic>Technology or Method:</i>\n Two mixtures based on the use of simple and inexpensive materials are produced and dielectrically characterized in the [0.5--40] GHz frequency range. Cole-Cole parameters are derived by the least-squares method. An inexpensive polystyrene mold to obtain morphologically compatible skin thicknesses is presented. Finally, these phantoms are used for experimental mm-wave imaging tests in two scenarios, with targets with different size and reflectivity in air and in an oil-based phantom. \n<italic>Results:</i>\n The dielectric characteristics of the produced skin phantoms are compared with those of human skin, showing excellent agreement over the entire spectrum. Realistic and uniform thicknesses from 1 to 2.5 mm were obtained. The experimental images show the possibility of detecting targets with different reflectivity below the skin at mm- waves. \n<italic>Conclusions:</i>\n two phantoms based on safe and low-cost materials emulating dielectric characteristics (up to 40 GHz) and morphological characteristics of the skin were proposed. One of these phantoms has been used for a number of mm-wave imaging system tests in different scenarios, and the potential of mm-waves to detect non-superficial targets even in the presence of skin is demonstrated. \n<italic>Clinical or Biological Impact:</i>\n the results presented in this paper provide a replicable methodology for skin phantom realization and show the potential feasibility of mm-wave imaging for early detection of breast cancer.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 1","pages":"51-58"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Low-Cost Production of Tissue-Mimicking Skin Phantoms Up to 40 GHz\",\"authors\":\"Simona Di Meo;Giulia Matrone;Giovanni Magenes;Marco Pasian\",\"doi\":\"10.1109/JERM.2024.3349851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Objectives:</i>\\n In this paper, a simple methodology for making skin phantoms is presented. In addition, the first millimeter (mm)-wave images in scenarios including the skin phantoms are shown. \\n<italic>Technology or Method:</i>\\n Two mixtures based on the use of simple and inexpensive materials are produced and dielectrically characterized in the [0.5--40] GHz frequency range. Cole-Cole parameters are derived by the least-squares method. An inexpensive polystyrene mold to obtain morphologically compatible skin thicknesses is presented. Finally, these phantoms are used for experimental mm-wave imaging tests in two scenarios, with targets with different size and reflectivity in air and in an oil-based phantom. \\n<italic>Results:</i>\\n The dielectric characteristics of the produced skin phantoms are compared with those of human skin, showing excellent agreement over the entire spectrum. Realistic and uniform thicknesses from 1 to 2.5 mm were obtained. The experimental images show the possibility of detecting targets with different reflectivity below the skin at mm- waves. \\n<italic>Conclusions:</i>\\n two phantoms based on safe and low-cost materials emulating dielectric characteristics (up to 40 GHz) and morphological characteristics of the skin were proposed. One of these phantoms has been used for a number of mm-wave imaging system tests in different scenarios, and the potential of mm-waves to detect non-superficial targets even in the presence of skin is demonstrated. \\n<italic>Clinical or Biological Impact:</i>\\n the results presented in this paper provide a replicable methodology for skin phantom realization and show the potential feasibility of mm-wave imaging for early detection of breast cancer.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"8 1\",\"pages\":\"51-58\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10406187/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10406187/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
On the Low-Cost Production of Tissue-Mimicking Skin Phantoms Up to 40 GHz
Objectives:
In this paper, a simple methodology for making skin phantoms is presented. In addition, the first millimeter (mm)-wave images in scenarios including the skin phantoms are shown.
Technology or Method:
Two mixtures based on the use of simple and inexpensive materials are produced and dielectrically characterized in the [0.5--40] GHz frequency range. Cole-Cole parameters are derived by the least-squares method. An inexpensive polystyrene mold to obtain morphologically compatible skin thicknesses is presented. Finally, these phantoms are used for experimental mm-wave imaging tests in two scenarios, with targets with different size and reflectivity in air and in an oil-based phantom.
Results:
The dielectric characteristics of the produced skin phantoms are compared with those of human skin, showing excellent agreement over the entire spectrum. Realistic and uniform thicknesses from 1 to 2.5 mm were obtained. The experimental images show the possibility of detecting targets with different reflectivity below the skin at mm- waves.
Conclusions:
two phantoms based on safe and low-cost materials emulating dielectric characteristics (up to 40 GHz) and morphological characteristics of the skin were proposed. One of these phantoms has been used for a number of mm-wave imaging system tests in different scenarios, and the potential of mm-waves to detect non-superficial targets even in the presence of skin is demonstrated.
Clinical or Biological Impact:
the results presented in this paper provide a replicable methodology for skin phantom realization and show the potential feasibility of mm-wave imaging for early detection of breast cancer.