Rifa Atul Izza Asyari;Kuan-Yuan Lee;Rezki El Arif;Tzyy-Sheng Jason Horng;Daniel Teichmann
{"title":"利用柔性发射阵列透镜在医疗雷达应用中进行远程探测的新方法","authors":"Rifa Atul Izza Asyari;Kuan-Yuan Lee;Rezki El Arif;Tzyy-Sheng Jason Horng;Daniel Teichmann","doi":"10.1109/JERM.2023.3347395","DOIUrl":null,"url":null,"abstract":"This study introduces a novel method employing adaptable transmitarray lenses for medical radar systems, enhancing the direction of electromagnetic beams in the far-field. The newly developed antenna array exhibited marked improvements in gain, bandwidth, return loss, and isolation within specific frequency ranges during testing. Comprehensive evaluations, including various focal lengths and bending scenarios, underscored the superior performance of this adaptable lens over prior techniques. Its exceptional precision and sensitivity render it an ideal tool for real-time remote health monitoring systems, particularly in pulse detection. The research findings consistently aligned the heart rates detected by this innovative method with standard reference rates, reaffirming its reliability and accuracy. This consistency highlights the potential of the transmitarray lenses as a valuable advancement in medical radar systems. The study not only validates the effectiveness and reliability of the lenses but also lays a solid foundation for further research and development in this field. The insights garnered are expected to significantly bolster the progression of radar technologies in healthcare, leading to more accurate, efficient, and non-invasive health monitoring solutions, thereby enhancing patient care and outcomes.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 1","pages":"36-50"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10400754","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach to Remote Detection in Medical Radar Applications Using Flexible Transmit Array Lenses\",\"authors\":\"Rifa Atul Izza Asyari;Kuan-Yuan Lee;Rezki El Arif;Tzyy-Sheng Jason Horng;Daniel Teichmann\",\"doi\":\"10.1109/JERM.2023.3347395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a novel method employing adaptable transmitarray lenses for medical radar systems, enhancing the direction of electromagnetic beams in the far-field. The newly developed antenna array exhibited marked improvements in gain, bandwidth, return loss, and isolation within specific frequency ranges during testing. Comprehensive evaluations, including various focal lengths and bending scenarios, underscored the superior performance of this adaptable lens over prior techniques. Its exceptional precision and sensitivity render it an ideal tool for real-time remote health monitoring systems, particularly in pulse detection. The research findings consistently aligned the heart rates detected by this innovative method with standard reference rates, reaffirming its reliability and accuracy. This consistency highlights the potential of the transmitarray lenses as a valuable advancement in medical radar systems. The study not only validates the effectiveness and reliability of the lenses but also lays a solid foundation for further research and development in this field. The insights garnered are expected to significantly bolster the progression of radar technologies in healthcare, leading to more accurate, efficient, and non-invasive health monitoring solutions, thereby enhancing patient care and outcomes.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"8 1\",\"pages\":\"36-50\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10400754\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10400754/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10400754/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Novel Approach to Remote Detection in Medical Radar Applications Using Flexible Transmit Array Lenses
This study introduces a novel method employing adaptable transmitarray lenses for medical radar systems, enhancing the direction of electromagnetic beams in the far-field. The newly developed antenna array exhibited marked improvements in gain, bandwidth, return loss, and isolation within specific frequency ranges during testing. Comprehensive evaluations, including various focal lengths and bending scenarios, underscored the superior performance of this adaptable lens over prior techniques. Its exceptional precision and sensitivity render it an ideal tool for real-time remote health monitoring systems, particularly in pulse detection. The research findings consistently aligned the heart rates detected by this innovative method with standard reference rates, reaffirming its reliability and accuracy. This consistency highlights the potential of the transmitarray lenses as a valuable advancement in medical radar systems. The study not only validates the effectiveness and reliability of the lenses but also lays a solid foundation for further research and development in this field. The insights garnered are expected to significantly bolster the progression of radar technologies in healthcare, leading to more accurate, efficient, and non-invasive health monitoring solutions, thereby enhancing patient care and outcomes.