Tian-Wei Liu , Jiang-Bo Bai , Nicholas Fantuzzi , Xiang Zhang
{"title":"薄壁可展开复合结构:综述","authors":"Tian-Wei Liu , Jiang-Bo Bai , Nicholas Fantuzzi , Xiang Zhang","doi":"10.1016/j.paerosci.2024.100985","DOIUrl":null,"url":null,"abstract":"<div><p>The elastic strain energy-driven thin-walled deployable composite structures, characterized by their integration of structure and functionality, have attracted considerable attention in the field of space applications. These structures utilize the stored strain energy accumulated during the folding process to achieve elastic deployment. Significant progress has been made in the understanding of deformation mechanisms, modeling, design, optimization, and applications of such structures based on existing research. This review critically discusses over 300 papers from the past few decades, providing a comprehensive exploration of the development of three representative types of deployable composite structures: deployable composite hinges, booms, and reflectors. Specifically, it starts by reviewing the structural design, functional mechanisms, theories, finite element modeling methods and experimental investigations for these three types of structures. It then introduces optimization design methods and their applications in deployable composite structures. Additionally, specific practical application cases of deployable composite structures are discussed. Finally, future challenges and prospects for deployable composite structures are outlined. This paper serves as a valuable reference and inspiration for the design and application of deployable composite structures. It is expected to promote further advancements in this field.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 100985"},"PeriodicalIF":11.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thin-walled deployable composite structures: A review\",\"authors\":\"Tian-Wei Liu , Jiang-Bo Bai , Nicholas Fantuzzi , Xiang Zhang\",\"doi\":\"10.1016/j.paerosci.2024.100985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The elastic strain energy-driven thin-walled deployable composite structures, characterized by their integration of structure and functionality, have attracted considerable attention in the field of space applications. These structures utilize the stored strain energy accumulated during the folding process to achieve elastic deployment. Significant progress has been made in the understanding of deformation mechanisms, modeling, design, optimization, and applications of such structures based on existing research. This review critically discusses over 300 papers from the past few decades, providing a comprehensive exploration of the development of three representative types of deployable composite structures: deployable composite hinges, booms, and reflectors. Specifically, it starts by reviewing the structural design, functional mechanisms, theories, finite element modeling methods and experimental investigations for these three types of structures. It then introduces optimization design methods and their applications in deployable composite structures. Additionally, specific practical application cases of deployable composite structures are discussed. Finally, future challenges and prospects for deployable composite structures are outlined. This paper serves as a valuable reference and inspiration for the design and application of deployable composite structures. It is expected to promote further advancements in this field.</p></div>\",\"PeriodicalId\":54553,\"journal\":{\"name\":\"Progress in Aerospace Sciences\",\"volume\":\"146 \",\"pages\":\"Article 100985\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Aerospace Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376042124000113\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042124000113","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Thin-walled deployable composite structures: A review
The elastic strain energy-driven thin-walled deployable composite structures, characterized by their integration of structure and functionality, have attracted considerable attention in the field of space applications. These structures utilize the stored strain energy accumulated during the folding process to achieve elastic deployment. Significant progress has been made in the understanding of deformation mechanisms, modeling, design, optimization, and applications of such structures based on existing research. This review critically discusses over 300 papers from the past few decades, providing a comprehensive exploration of the development of three representative types of deployable composite structures: deployable composite hinges, booms, and reflectors. Specifically, it starts by reviewing the structural design, functional mechanisms, theories, finite element modeling methods and experimental investigations for these three types of structures. It then introduces optimization design methods and their applications in deployable composite structures. Additionally, specific practical application cases of deployable composite structures are discussed. Finally, future challenges and prospects for deployable composite structures are outlined. This paper serves as a valuable reference and inspiration for the design and application of deployable composite structures. It is expected to promote further advancements in this field.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.