{"title":"扇动旋翼:将仿生特征融入微型旋翼的新型低雷诺数布局","authors":"Long Chen , Cheng Cheng , Chao Zhou , Yanlai Zhang , Jianghao Wu","doi":"10.1016/j.paerosci.2024.100984","DOIUrl":null,"url":null,"abstract":"<div><p>Since the birth of bio-inspired flapping-wing micro air vehicles, a controversial topic, i.e., whether and to what extent a flapping wing can outperform conventional micro rotors, has existed in the field of micro-to pico-scale unmanned aircraft. However, instead of answering this debate, an alternative idea that combines the flapping-wing and rotary-wing layouts was proposed and has been extensively studied over the last ten years. By merging bionic features of flapping wings into micro rotors, this novel layout, i.e., flapping rotary wing (FRW), can maintain autorotation with no driving torque and achieve both a superb lift generation and a moderate efficiency at a Reynolds number between 10<sup>3</sup> and 10<sup>4</sup>, presenting an additional choice for micro air vehicles when facing a task to balance the payload and energy cost. As the first review of FRW, this paper overviews the concept, bionic features, aerodynamic principles, and development of flyable prototypes since 2010, from fundamental aerodynamic mechanisms to key points in prototype design, including wing structure, actuator, transmission system, energy source, etc. The advantages and disadvantages of this novel layout over conventional flapping wings and micro rotors are discussed. Four challenging directions are then suggested to improve the flight performance of this layout and thus boost its application in military and civilian fields.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 100984"},"PeriodicalIF":11.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flapping rotary wing: A novel low-Reynolds number layout merging bionic features into micro rotors\",\"authors\":\"Long Chen , Cheng Cheng , Chao Zhou , Yanlai Zhang , Jianghao Wu\",\"doi\":\"10.1016/j.paerosci.2024.100984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since the birth of bio-inspired flapping-wing micro air vehicles, a controversial topic, i.e., whether and to what extent a flapping wing can outperform conventional micro rotors, has existed in the field of micro-to pico-scale unmanned aircraft. However, instead of answering this debate, an alternative idea that combines the flapping-wing and rotary-wing layouts was proposed and has been extensively studied over the last ten years. By merging bionic features of flapping wings into micro rotors, this novel layout, i.e., flapping rotary wing (FRW), can maintain autorotation with no driving torque and achieve both a superb lift generation and a moderate efficiency at a Reynolds number between 10<sup>3</sup> and 10<sup>4</sup>, presenting an additional choice for micro air vehicles when facing a task to balance the payload and energy cost. As the first review of FRW, this paper overviews the concept, bionic features, aerodynamic principles, and development of flyable prototypes since 2010, from fundamental aerodynamic mechanisms to key points in prototype design, including wing structure, actuator, transmission system, energy source, etc. The advantages and disadvantages of this novel layout over conventional flapping wings and micro rotors are discussed. Four challenging directions are then suggested to improve the flight performance of this layout and thus boost its application in military and civilian fields.</p></div>\",\"PeriodicalId\":54553,\"journal\":{\"name\":\"Progress in Aerospace Sciences\",\"volume\":\"146 \",\"pages\":\"Article 100984\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Aerospace Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376042124000101\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042124000101","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Flapping rotary wing: A novel low-Reynolds number layout merging bionic features into micro rotors
Since the birth of bio-inspired flapping-wing micro air vehicles, a controversial topic, i.e., whether and to what extent a flapping wing can outperform conventional micro rotors, has existed in the field of micro-to pico-scale unmanned aircraft. However, instead of answering this debate, an alternative idea that combines the flapping-wing and rotary-wing layouts was proposed and has been extensively studied over the last ten years. By merging bionic features of flapping wings into micro rotors, this novel layout, i.e., flapping rotary wing (FRW), can maintain autorotation with no driving torque and achieve both a superb lift generation and a moderate efficiency at a Reynolds number between 103 and 104, presenting an additional choice for micro air vehicles when facing a task to balance the payload and energy cost. As the first review of FRW, this paper overviews the concept, bionic features, aerodynamic principles, and development of flyable prototypes since 2010, from fundamental aerodynamic mechanisms to key points in prototype design, including wing structure, actuator, transmission system, energy source, etc. The advantages and disadvantages of this novel layout over conventional flapping wings and micro rotors are discussed. Four challenging directions are then suggested to improve the flight performance of this layout and thus boost its application in military and civilian fields.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.