坠落区域前时频定位算子特征值的指数下限

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Aleksei Kulikov
{"title":"坠落区域前时频定位算子特征值的指数下限","authors":"Aleksei Kulikov","doi":"10.1016/j.acha.2024.101639","DOIUrl":null,"url":null,"abstract":"<div><p>For a pair of sets <span><math><mi>T</mi><mo>,</mo><mi>Ω</mi><mo>⊂</mo><mi>R</mi></math></span> the time-frequency localization operator is defined as <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi><mo>,</mo><mi>Ω</mi></mrow></msub><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>T</mi></mrow></msub><msup><mrow><mi>F</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>P</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mi>F</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>, where <span><math><mi>F</mi></math></span> is the Fourier transform and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> are projection operators onto <em>T</em> and Ω, respectively. We show that in the case when both <em>T</em> and Ω are intervals, the eigenvalues of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi><mo>,</mo><mi>Ω</mi></mrow></msub></math></span> satisfy <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>,</mo><mi>Ω</mi><mo>)</mo><mo>≥</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>δ</mi></mrow><mrow><mo>|</mo><mi>T</mi><mo>|</mo><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></msup></math></span> if <span><math><mi>n</mi><mo>≤</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mo>|</mo><mi>T</mi><mo>|</mo><mo>|</mo><mi>Ω</mi><mo>|</mo></math></span>, where <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> is arbitrary and <span><math><mi>δ</mi><mo>=</mo><mi>δ</mi><mo>(</mo><mi>ε</mi><mo>)</mo><mo>&lt;</mo><mn>1</mn></math></span>, provided that <span><math><mo>|</mo><mi>T</mi><mo>|</mo><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>&gt;</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>ε</mi></mrow></msub></math></span>. This improves the result of Bonami, Jaming and Karoui, who proved it for <span><math><mi>ε</mi><mo>≥</mo><mn>0.42</mn></math></span>. The proof is based on the properties of the Bargmann transform.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101639"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential lower bound for the eigenvalues of the time-frequency localization operator before the plunge region\",\"authors\":\"Aleksei Kulikov\",\"doi\":\"10.1016/j.acha.2024.101639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a pair of sets <span><math><mi>T</mi><mo>,</mo><mi>Ω</mi><mo>⊂</mo><mi>R</mi></math></span> the time-frequency localization operator is defined as <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi><mo>,</mo><mi>Ω</mi></mrow></msub><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>T</mi></mrow></msub><msup><mrow><mi>F</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>P</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mi>F</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>, where <span><math><mi>F</mi></math></span> is the Fourier transform and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> are projection operators onto <em>T</em> and Ω, respectively. We show that in the case when both <em>T</em> and Ω are intervals, the eigenvalues of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi><mo>,</mo><mi>Ω</mi></mrow></msub></math></span> satisfy <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>,</mo><mi>Ω</mi><mo>)</mo><mo>≥</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>δ</mi></mrow><mrow><mo>|</mo><mi>T</mi><mo>|</mo><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></msup></math></span> if <span><math><mi>n</mi><mo>≤</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mo>|</mo><mi>T</mi><mo>|</mo><mo>|</mo><mi>Ω</mi><mo>|</mo></math></span>, where <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> is arbitrary and <span><math><mi>δ</mi><mo>=</mo><mi>δ</mi><mo>(</mo><mi>ε</mi><mo>)</mo><mo>&lt;</mo><mn>1</mn></math></span>, provided that <span><math><mo>|</mo><mi>T</mi><mo>|</mo><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>&gt;</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>ε</mi></mrow></msub></math></span>. This improves the result of Bonami, Jaming and Karoui, who proved it for <span><math><mi>ε</mi><mo>≥</mo><mn>0.42</mn></math></span>. The proof is based on the properties of the Bargmann transform.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"71 \",\"pages\":\"Article 101639\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000162\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000162","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于一对集合 T,Ω⊂R,时频定位算子定义为 ST,Ω=PTF-1PΩFPT,其中 F 是傅立叶变换,PT,PΩ 分别是 T 和 Ω 上的投影算子。我们证明,在 T 和 Ω 都是区间的情况下,如果 n≤(1-ε)|T||Ω| ,ST,Ω 的特征值满足 λn(T,Ω)≥1-δ|T||Ω| ,其中 ε>0 是任意的,δ=δ(ε)<1,条件是 |T||Ω|>cε。这改进了博纳米、贾明和卡鲁伊的结果,他们是在ε≥0.42 时证明的。证明基于巴格曼变换的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential lower bound for the eigenvalues of the time-frequency localization operator before the plunge region

For a pair of sets T,ΩR the time-frequency localization operator is defined as ST,Ω=PTF1PΩFPT, where F is the Fourier transform and PT,PΩ are projection operators onto T and Ω, respectively. We show that in the case when both T and Ω are intervals, the eigenvalues of ST,Ω satisfy λn(T,Ω)1δ|T||Ω| if n(1ε)|T||Ω|, where ε>0 is arbitrary and δ=δ(ε)<1, provided that |T||Ω|>cε. This improves the result of Bonami, Jaming and Karoui, who proved it for ε0.42. The proof is based on the properties of the Bargmann transform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信