{"title":"随机超图中偶数循环的图兰定理","authors":"Jiaxi Nie","doi":"10.1016/j.jctb.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>F</mi></math></span> be a family of <em>r</em>-uniform hypergraphs. The random Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>,</mo><mi>F</mi><mo>)</mo></math></span> is the maximum number of edges in an <span><math><mi>F</mi></math></span>-free subgraph of <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>, where <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is the Erdős-Rényi random <em>r</em>-graph with parameter <em>p</em>. Let <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote the <em>r</em>-uniform linear cycle of length <em>ℓ</em>. For <span><math><mi>p</mi><mo>≥</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>, Mubayi and Yepremyan showed that <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mi>max</mi><mo></mo><mo>{</mo><msup><mrow><mi>p</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><mo>×</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>+</mo><mfrac><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>,</mo><mi>p</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>}</mo></math></span>. This upper bound is not tight when <span><math><mi>p</mi><mo>≤</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>. In this paper, we close the gap for <span><math><mi>r</mi><mo>≥</mo><mn>4</mn></math></span>. More precisely, we show that <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>p</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> when <span><math><mi>p</mi><mo>≥</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>. Similar results have recently been obtained independently in a different way by Mubayi and Yepremyan. For <span><math><mi>r</mi><mo>=</mo><mn>3</mn></math></span>, we significantly improve Mubayi and Yepremyan's upper bound. Moreover, we give reasonably good upper bounds for the random Turán numbers of Berge even cycles, which improve previous results of Spiro and Verstraëte.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turán theorems for even cycles in random hypergraph\",\"authors\":\"Jiaxi Nie\",\"doi\":\"10.1016/j.jctb.2024.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>F</mi></math></span> be a family of <em>r</em>-uniform hypergraphs. The random Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>,</mo><mi>F</mi><mo>)</mo></math></span> is the maximum number of edges in an <span><math><mi>F</mi></math></span>-free subgraph of <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>, where <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is the Erdős-Rényi random <em>r</em>-graph with parameter <em>p</em>. Let <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote the <em>r</em>-uniform linear cycle of length <em>ℓ</em>. For <span><math><mi>p</mi><mo>≥</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>, Mubayi and Yepremyan showed that <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mi>max</mi><mo></mo><mo>{</mo><msup><mrow><mi>p</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><mo>×</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>+</mo><mfrac><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>,</mo><mi>p</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>}</mo></math></span>. This upper bound is not tight when <span><math><mi>p</mi><mo>≤</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>. In this paper, we close the gap for <span><math><mi>r</mi><mo>≥</mo><mn>4</mn></math></span>. More precisely, we show that <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>p</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> when <span><math><mi>p</mi><mo>≥</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>. Similar results have recently been obtained independently in a different way by Mubayi and Yepremyan. For <span><math><mi>r</mi><mo>=</mo><mn>3</mn></math></span>, we significantly improve Mubayi and Yepremyan's upper bound. Moreover, we give reasonably good upper bounds for the random Turán numbers of Berge even cycles, which improve previous results of Spiro and Verstraëte.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009589562400008X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562400008X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Turán theorems for even cycles in random hypergraph
Let be a family of r-uniform hypergraphs. The random Turán number is the maximum number of edges in an -free subgraph of , where is the Erdős-Rényi random r-graph with parameter p. Let denote the r-uniform linear cycle of length ℓ. For , Mubayi and Yepremyan showed that . This upper bound is not tight when . In this paper, we close the gap for . More precisely, we show that when . Similar results have recently been obtained independently in a different way by Mubayi and Yepremyan. For , we significantly improve Mubayi and Yepremyan's upper bound. Moreover, we give reasonably good upper bounds for the random Turán numbers of Berge even cycles, which improve previous results of Spiro and Verstraëte.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.