{"title":"制备用于膜通气生物膜反应器的 PDMS 和 PDMS-UiO-66 富氧膜和模块。","authors":"Haiyan Tao, Xiaochang Cao, Rujie Song, Zebin Zhou, Fang Cheng","doi":"10.2166/wst.2024.043","DOIUrl":null,"url":null,"abstract":"<p><p>A membrane-aerated biofilm reactor (MABR) combines membrane technology with biofilm processes and has unique advantages in the treatment of organic wastewater and volatile wastewater. The common membranes for MABR systems usually have relatively uneven pore structures and low bubble point pressure, resulting in unsatisfactory O<sub>2</sub> utilization and wastewater treatment efficiency. In this work, polydimethylsiloxane (PDMS) and UiO-66 (a Zr-based metal organic framework) were coated on the surface of a commercial polypropylene (PP) hollow fiber membrane to prepare oxygen-rich MABR membranes and modules, which showed an attractive O<sub>2</sub> utilization rate and wastewater treatment efficiency. The bubble points of the PDMS and PDMS-UiO-66 membranes were significantly higher than those of the PP membranes, and the PDMS-UiO-66 membranes had better oxygen enrichment capacity and biological affinity. The optimal PDMS-UiO-66 membrane modules had an O<sub>2</sub> permeance of 31.65 GPU (1 GPU = 3.35 × 10<sup>-10</sup> mol m<sup>-2</sup> s<sup>-1</sup> Pa<sup>-1</sup>), with O<sub>2</sub>/N<sub>2</sub> selectivity of 2.21. The membrane hanging effect and processing capacity for domestic sewage were greatly improved. This study may provide insights and guidelines to fabricate porous mixed matrix membranes and modules in the industry for MABR. The developed products are expected to be applied in the actual separation process.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_043/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preparation of PDMS and PDMS-UiO-66 oxygen-rich membranes and modules for membrane-aerated biofilm reactors.\",\"authors\":\"Haiyan Tao, Xiaochang Cao, Rujie Song, Zebin Zhou, Fang Cheng\",\"doi\":\"10.2166/wst.2024.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A membrane-aerated biofilm reactor (MABR) combines membrane technology with biofilm processes and has unique advantages in the treatment of organic wastewater and volatile wastewater. The common membranes for MABR systems usually have relatively uneven pore structures and low bubble point pressure, resulting in unsatisfactory O<sub>2</sub> utilization and wastewater treatment efficiency. In this work, polydimethylsiloxane (PDMS) and UiO-66 (a Zr-based metal organic framework) were coated on the surface of a commercial polypropylene (PP) hollow fiber membrane to prepare oxygen-rich MABR membranes and modules, which showed an attractive O<sub>2</sub> utilization rate and wastewater treatment efficiency. The bubble points of the PDMS and PDMS-UiO-66 membranes were significantly higher than those of the PP membranes, and the PDMS-UiO-66 membranes had better oxygen enrichment capacity and biological affinity. The optimal PDMS-UiO-66 membrane modules had an O<sub>2</sub> permeance of 31.65 GPU (1 GPU = 3.35 × 10<sup>-10</sup> mol m<sup>-2</sup> s<sup>-1</sup> Pa<sup>-1</sup>), with O<sub>2</sub>/N<sub>2</sub> selectivity of 2.21. The membrane hanging effect and processing capacity for domestic sewage were greatly improved. This study may provide insights and guidelines to fabricate porous mixed matrix membranes and modules in the industry for MABR. The developed products are expected to be applied in the actual separation process.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_043/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.043\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.043","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Preparation of PDMS and PDMS-UiO-66 oxygen-rich membranes and modules for membrane-aerated biofilm reactors.
A membrane-aerated biofilm reactor (MABR) combines membrane technology with biofilm processes and has unique advantages in the treatment of organic wastewater and volatile wastewater. The common membranes for MABR systems usually have relatively uneven pore structures and low bubble point pressure, resulting in unsatisfactory O2 utilization and wastewater treatment efficiency. In this work, polydimethylsiloxane (PDMS) and UiO-66 (a Zr-based metal organic framework) were coated on the surface of a commercial polypropylene (PP) hollow fiber membrane to prepare oxygen-rich MABR membranes and modules, which showed an attractive O2 utilization rate and wastewater treatment efficiency. The bubble points of the PDMS and PDMS-UiO-66 membranes were significantly higher than those of the PP membranes, and the PDMS-UiO-66 membranes had better oxygen enrichment capacity and biological affinity. The optimal PDMS-UiO-66 membrane modules had an O2 permeance of 31.65 GPU (1 GPU = 3.35 × 10-10 mol m-2 s-1 Pa-1), with O2/N2 selectivity of 2.21. The membrane hanging effect and processing capacity for domestic sewage were greatly improved. This study may provide insights and guidelines to fabricate porous mixed matrix membranes and modules in the industry for MABR. The developed products are expected to be applied in the actual separation process.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.