奇异值分解驱动的非负矩阵因式分解在肉瘤复发关联模式识别中的应用

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Jin Deng, Kaijun Li, Wei Luo
{"title":"奇异值分解驱动的非负矩阵因式分解在肉瘤复发关联模式识别中的应用","authors":"Jin Deng, Kaijun Li, Wei Luo","doi":"10.1007/s12539-024-00606-1","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcomas are malignant tumors from mesenchymal tissue and are characterized by their complexity and diversity. The high recurrence rate making it important to understand the mechanisms behind their recurrence and to develop personalized treatments and drugs. However, previous studies on the association patterns of multi-modal data on sarcoma recurrence have overlooked the fact that genes do not act independently, but rather function within signaling pathways. Therefore, this study collected 290 whole solid images, 869 gene and 1387 pathway data of over 260 sarcoma samples from UCSC and TCGA to identify the association patterns of gene-pathway-cell related to sarcoma recurrences. Meanwhile, considering that most multi-modal data fusion methods based on the joint non-negative matrix factorization (NMF) model led to poor experimental repeatability due to random initialization of factorization parameters, the study proposed the singular value decomposition (SVD)-driven joint NMF model by applying the SVD method to calculate initialized weight and coefficient matrices to achieve the reproducibility of the results. The results of the experimental comparison indicated that the SVD algorithm enhances the performance of the joint NMF algorithm. Furthermore, the representative module indicated a significant relationship between genes in pathways and image features. Multi-level analysis provided valuable insights into the connections between biological processes, cellular features, and sarcoma recurrence. In addition, potential biomarkers were uncovered, while various mechanisms of sarcoma recurrence were identified from an imaging genetic perspective. Overall, the SVD-NMF model affords a novel perspective on combining multi-omics data to explore the association related to sarcoma recurrence.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"554-567"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular Value Decomposition-Driven Non-negative Matrix Factorization with Application to Identify the Association Patterns of Sarcoma Recurrence.\",\"authors\":\"Jin Deng, Kaijun Li, Wei Luo\",\"doi\":\"10.1007/s12539-024-00606-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sarcomas are malignant tumors from mesenchymal tissue and are characterized by their complexity and diversity. The high recurrence rate making it important to understand the mechanisms behind their recurrence and to develop personalized treatments and drugs. However, previous studies on the association patterns of multi-modal data on sarcoma recurrence have overlooked the fact that genes do not act independently, but rather function within signaling pathways. Therefore, this study collected 290 whole solid images, 869 gene and 1387 pathway data of over 260 sarcoma samples from UCSC and TCGA to identify the association patterns of gene-pathway-cell related to sarcoma recurrences. Meanwhile, considering that most multi-modal data fusion methods based on the joint non-negative matrix factorization (NMF) model led to poor experimental repeatability due to random initialization of factorization parameters, the study proposed the singular value decomposition (SVD)-driven joint NMF model by applying the SVD method to calculate initialized weight and coefficient matrices to achieve the reproducibility of the results. The results of the experimental comparison indicated that the SVD algorithm enhances the performance of the joint NMF algorithm. Furthermore, the representative module indicated a significant relationship between genes in pathways and image features. Multi-level analysis provided valuable insights into the connections between biological processes, cellular features, and sarcoma recurrence. In addition, potential biomarkers were uncovered, while various mechanisms of sarcoma recurrence were identified from an imaging genetic perspective. Overall, the SVD-NMF model affords a novel perspective on combining multi-omics data to explore the association related to sarcoma recurrence.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"554-567\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00606-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00606-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肉瘤是来自间质组织的恶性肿瘤,具有复杂性和多样性的特点。肉瘤的复发率很高,因此了解其复发背后的机制以及开发个性化治疗方法和药物非常重要。然而,以往关于肉瘤复发多模态数据关联模式的研究忽略了一个事实,即基因并非独立作用,而是在信号通路中发挥作用。因此,本研究从UCSC和TCGA收集了260多个肉瘤样本的290张全实体图像、869个基因和1387个通路数据,以确定与肉瘤复发相关的基因-通路-细胞的关联模式。同时,考虑到大多数基于联合非负矩阵因式分解(NMF)模型的多模态数据融合方法由于因式分解参数的随机初始化导致实验可重复性差,该研究提出了奇异值分解(SVD)驱动的联合NMF模型,通过应用SVD方法计算初始化的权重矩阵和系数矩阵来实现结果的可重复性。实验对比结果表明,SVD 算法提高了联合 NMF 算法的性能。此外,代表性模块表明,通路中的基因与图像特征之间存在显著关系。多层次分析为生物过程、细胞特征和肉瘤复发之间的联系提供了有价值的见解。此外,还发现了潜在的生物标记物,并从成像基因的角度确定了肉瘤复发的各种机制。总之,SVD-NMF 模型为结合多组学数据探索肉瘤复发的相关性提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Singular Value Decomposition-Driven Non-negative Matrix Factorization with Application to Identify the Association Patterns of Sarcoma Recurrence.

Singular Value Decomposition-Driven Non-negative Matrix Factorization with Application to Identify the Association Patterns of Sarcoma Recurrence.

Sarcomas are malignant tumors from mesenchymal tissue and are characterized by their complexity and diversity. The high recurrence rate making it important to understand the mechanisms behind their recurrence and to develop personalized treatments and drugs. However, previous studies on the association patterns of multi-modal data on sarcoma recurrence have overlooked the fact that genes do not act independently, but rather function within signaling pathways. Therefore, this study collected 290 whole solid images, 869 gene and 1387 pathway data of over 260 sarcoma samples from UCSC and TCGA to identify the association patterns of gene-pathway-cell related to sarcoma recurrences. Meanwhile, considering that most multi-modal data fusion methods based on the joint non-negative matrix factorization (NMF) model led to poor experimental repeatability due to random initialization of factorization parameters, the study proposed the singular value decomposition (SVD)-driven joint NMF model by applying the SVD method to calculate initialized weight and coefficient matrices to achieve the reproducibility of the results. The results of the experimental comparison indicated that the SVD algorithm enhances the performance of the joint NMF algorithm. Furthermore, the representative module indicated a significant relationship between genes in pathways and image features. Multi-level analysis provided valuable insights into the connections between biological processes, cellular features, and sarcoma recurrence. In addition, potential biomarkers were uncovered, while various mechanisms of sarcoma recurrence were identified from an imaging genetic perspective. Overall, the SVD-NMF model affords a novel perspective on combining multi-omics data to explore the association related to sarcoma recurrence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信