Bohan Zeng, Runlan Wan, Kun Chang, Jing Li, Xuanzhi Zhang, Guohai Shi, Dingwei Ye, Fujiang Xu
{"title":"赖氨酸甲基转移酶 5C 通过有氧糖酵解增加透明细胞肾细胞癌的增殖和转移能力","authors":"Bohan Zeng, Runlan Wan, Kun Chang, Jing Li, Xuanzhi Zhang, Guohai Shi, Dingwei Ye, Fujiang Xu","doi":"10.3892/ijo.2024.5633","DOIUrl":null,"url":null,"abstract":"<p><p>Among all types of renal cancer, clear cell renal cell carcinoma (ccRCC) is the most common and lethal subtype and is associated with a high risk of metastasis and recurrence. Histone modifications regulate several biological processes that are fundamental to the development of cancer. Lysine methyltransferase 5C (KMT5C; also known as SUV420H2) is an epigenetic modifier responsible for the trimethylation of H4K20, which drives critical cellular events, including genome integrity, cell growth and epithelial‑mesenchymal transition (EMT), in various types of cancer. However, the role of KMT5C in ccRCC remains unclear. As such, the expression and function of KMT5C in ccRCC were investigated in the present study. KMT5C expression was significantly increased in ccRCC tissues compared with normal tissues (P<0.0001), and it was closely associated with the overall survival rate of patients with ccRCC. By establishing ccRCC cell lines with KMT5C expression knockdown, the role of KMT5C in the maintenance of aerobic glycolysis in ccRCC cells via the regulation of several vital glycolytic genes was identified. Additionally, KMT5C promoted the proliferation and EMT of ccRCC cells by controlling crucial EMT transcriptional factors. Together, these data suggested that KMT5C may act as an oncoprotein, guide molecular diagnosis, and shed light on novel drug development and therapeutic strategies for patients with ccRCC.</p>","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"64 4","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919755/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lysine methyltransferase 5C increases the proliferation and metastatic abilities of clear cell renal cell carcinoma via aerobic glycolysis.\",\"authors\":\"Bohan Zeng, Runlan Wan, Kun Chang, Jing Li, Xuanzhi Zhang, Guohai Shi, Dingwei Ye, Fujiang Xu\",\"doi\":\"10.3892/ijo.2024.5633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Among all types of renal cancer, clear cell renal cell carcinoma (ccRCC) is the most common and lethal subtype and is associated with a high risk of metastasis and recurrence. Histone modifications regulate several biological processes that are fundamental to the development of cancer. Lysine methyltransferase 5C (KMT5C; also known as SUV420H2) is an epigenetic modifier responsible for the trimethylation of H4K20, which drives critical cellular events, including genome integrity, cell growth and epithelial‑mesenchymal transition (EMT), in various types of cancer. However, the role of KMT5C in ccRCC remains unclear. As such, the expression and function of KMT5C in ccRCC were investigated in the present study. KMT5C expression was significantly increased in ccRCC tissues compared with normal tissues (P<0.0001), and it was closely associated with the overall survival rate of patients with ccRCC. By establishing ccRCC cell lines with KMT5C expression knockdown, the role of KMT5C in the maintenance of aerobic glycolysis in ccRCC cells via the regulation of several vital glycolytic genes was identified. Additionally, KMT5C promoted the proliferation and EMT of ccRCC cells by controlling crucial EMT transcriptional factors. Together, these data suggested that KMT5C may act as an oncoprotein, guide molecular diagnosis, and shed light on novel drug development and therapeutic strategies for patients with ccRCC.</p>\",\"PeriodicalId\":14175,\"journal\":{\"name\":\"International journal of oncology\",\"volume\":\"64 4\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919755/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijo.2024.5633\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijo.2024.5633","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Lysine methyltransferase 5C increases the proliferation and metastatic abilities of clear cell renal cell carcinoma via aerobic glycolysis.
Among all types of renal cancer, clear cell renal cell carcinoma (ccRCC) is the most common and lethal subtype and is associated with a high risk of metastasis and recurrence. Histone modifications regulate several biological processes that are fundamental to the development of cancer. Lysine methyltransferase 5C (KMT5C; also known as SUV420H2) is an epigenetic modifier responsible for the trimethylation of H4K20, which drives critical cellular events, including genome integrity, cell growth and epithelial‑mesenchymal transition (EMT), in various types of cancer. However, the role of KMT5C in ccRCC remains unclear. As such, the expression and function of KMT5C in ccRCC were investigated in the present study. KMT5C expression was significantly increased in ccRCC tissues compared with normal tissues (P<0.0001), and it was closely associated with the overall survival rate of patients with ccRCC. By establishing ccRCC cell lines with KMT5C expression knockdown, the role of KMT5C in the maintenance of aerobic glycolysis in ccRCC cells via the regulation of several vital glycolytic genes was identified. Additionally, KMT5C promoted the proliferation and EMT of ccRCC cells by controlling crucial EMT transcriptional factors. Together, these data suggested that KMT5C may act as an oncoprotein, guide molecular diagnosis, and shed light on novel drug development and therapeutic strategies for patients with ccRCC.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.