Isabella M.G. Silva , Aline Q. Rodrigues , Rayane B. Ribeiro , Beatriz A. Aguiar , Anne E.S.P. Marinho , Elisa A.M. Souza , Yasmin B. Ferreira , Victoria C.O. Azevedo , Daniela M. Oliveira , Sônia N. Báo , Jair T. Goulart , Carolina M. Lucci , Fernanda Paulini
{"title":"促红细胞生成素对冷冻保存/移植猫卵巢组织的影响:两种培养方法的比较","authors":"Isabella M.G. Silva , Aline Q. Rodrigues , Rayane B. Ribeiro , Beatriz A. Aguiar , Anne E.S.P. Marinho , Elisa A.M. Souza , Yasmin B. Ferreira , Victoria C.O. Azevedo , Daniela M. Oliveira , Sônia N. Báo , Jair T. Goulart , Carolina M. Lucci , Fernanda Paulini","doi":"10.1016/j.cryobiol.2024.104861","DOIUrl":null,"url":null,"abstract":"<div><p>Many feline species are currently threatened with extinction. Therefore, germplasm bank establishment has become imperative. However, cryoinjury and ischemia-reperfusion injury pose significant obstacles to both cryopreservation and xenotransplantation. In this regard, erythropoietin (Epo) represents a potential alternative strategy due to its properties. This study aimed to assess the incubation of domestic cat ovarian tissue in Epo, both before and after cryopreservation, and investigate its effectiveness in promoting revascularization following xenotransplantation. Sixteen ovaries from 8 healthy cats were sliced following elective bilateral ovariohysterectomy (OHE). Subsequently, 8 fragments measuring 3 mm³ each were obtained from the cortical region of each ovary. The fragments were allocated into 3 treatment groups: Cryo group, fragments were cryopreserved, thawed and immediately transplanted; Cryo + Epo group, fragments were first cryopreserved in nitrogen, thawed, incubated in Epo (100 IU) for 2h and transplanted; and the Epo + Cryo group, in which fragments were first incubated in Epo (100 IU) for 2h, cryopreserved, thawed and immediately transplanted. The fragments were then xenotransplanted into the dorsal subcutaneous region of ovariectomized female nude mice and retrieved at 7, 14, 21, and 28 days post-transplantation. The results indicated that Epo effectively enhanced follicular survival, preservation of viability, and tissue revascularization. The Epo + Cryo group displayed better revascularization rates on D14 and D21 post-transplantation and an increase in primordial and growing follicles on D28, the Cryo + Epo group exhibited significantly more follicles on D14 and D21, with fewer degenerated follicles.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erythropoietin effects on cryopreserved/transplanted cat ovarian tissue: A comparison of two incubation methods\",\"authors\":\"Isabella M.G. Silva , Aline Q. Rodrigues , Rayane B. Ribeiro , Beatriz A. Aguiar , Anne E.S.P. Marinho , Elisa A.M. Souza , Yasmin B. Ferreira , Victoria C.O. Azevedo , Daniela M. Oliveira , Sônia N. Báo , Jair T. Goulart , Carolina M. Lucci , Fernanda Paulini\",\"doi\":\"10.1016/j.cryobiol.2024.104861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many feline species are currently threatened with extinction. Therefore, germplasm bank establishment has become imperative. However, cryoinjury and ischemia-reperfusion injury pose significant obstacles to both cryopreservation and xenotransplantation. In this regard, erythropoietin (Epo) represents a potential alternative strategy due to its properties. This study aimed to assess the incubation of domestic cat ovarian tissue in Epo, both before and after cryopreservation, and investigate its effectiveness in promoting revascularization following xenotransplantation. Sixteen ovaries from 8 healthy cats were sliced following elective bilateral ovariohysterectomy (OHE). Subsequently, 8 fragments measuring 3 mm³ each were obtained from the cortical region of each ovary. The fragments were allocated into 3 treatment groups: Cryo group, fragments were cryopreserved, thawed and immediately transplanted; Cryo + Epo group, fragments were first cryopreserved in nitrogen, thawed, incubated in Epo (100 IU) for 2h and transplanted; and the Epo + Cryo group, in which fragments were first incubated in Epo (100 IU) for 2h, cryopreserved, thawed and immediately transplanted. The fragments were then xenotransplanted into the dorsal subcutaneous region of ovariectomized female nude mice and retrieved at 7, 14, 21, and 28 days post-transplantation. The results indicated that Epo effectively enhanced follicular survival, preservation of viability, and tissue revascularization. The Epo + Cryo group displayed better revascularization rates on D14 and D21 post-transplantation and an increase in primordial and growing follicles on D28, the Cryo + Epo group exhibited significantly more follicles on D14 and D21, with fewer degenerated follicles.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011224024000166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011224024000166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Erythropoietin effects on cryopreserved/transplanted cat ovarian tissue: A comparison of two incubation methods
Many feline species are currently threatened with extinction. Therefore, germplasm bank establishment has become imperative. However, cryoinjury and ischemia-reperfusion injury pose significant obstacles to both cryopreservation and xenotransplantation. In this regard, erythropoietin (Epo) represents a potential alternative strategy due to its properties. This study aimed to assess the incubation of domestic cat ovarian tissue in Epo, both before and after cryopreservation, and investigate its effectiveness in promoting revascularization following xenotransplantation. Sixteen ovaries from 8 healthy cats were sliced following elective bilateral ovariohysterectomy (OHE). Subsequently, 8 fragments measuring 3 mm³ each were obtained from the cortical region of each ovary. The fragments were allocated into 3 treatment groups: Cryo group, fragments were cryopreserved, thawed and immediately transplanted; Cryo + Epo group, fragments were first cryopreserved in nitrogen, thawed, incubated in Epo (100 IU) for 2h and transplanted; and the Epo + Cryo group, in which fragments were first incubated in Epo (100 IU) for 2h, cryopreserved, thawed and immediately transplanted. The fragments were then xenotransplanted into the dorsal subcutaneous region of ovariectomized female nude mice and retrieved at 7, 14, 21, and 28 days post-transplantation. The results indicated that Epo effectively enhanced follicular survival, preservation of viability, and tissue revascularization. The Epo + Cryo group displayed better revascularization rates on D14 and D21 post-transplantation and an increase in primordial and growing follicles on D28, the Cryo + Epo group exhibited significantly more follicles on D14 and D21, with fewer degenerated follicles.