Cecília Rocha da Silva, Lívia Gurgel do Amaral Valente Sá, João Batista de Andrade Neto, Fátima Daiana Dias Barroso, Vitória Pessoa de Farias Cabral, Daniel Sampaio Rodrigues, Lisandra Juvêncio da Silva, Iri Sandro Pampolha Lima, Lourdes Pérez, Anderson Ramos da Silva, Denise Ramos Moreira, Nágila Maria Pontes Silva Ricardo, Hélio Vitoriano Nobre
{"title":"生物表面活性剂凝胶在预防导管中由耐氟康唑白僵菌和耐甲氧西林金黄色葡萄球菌形成的混合生物膜方面的抗菌潜力。","authors":"Cecília Rocha da Silva, Lívia Gurgel do Amaral Valente Sá, João Batista de Andrade Neto, Fátima Daiana Dias Barroso, Vitória Pessoa de Farias Cabral, Daniel Sampaio Rodrigues, Lisandra Juvêncio da Silva, Iri Sandro Pampolha Lima, Lourdes Pérez, Anderson Ramos da Silva, Denise Ramos Moreira, Nágila Maria Pontes Silva Ricardo, Hélio Vitoriano Nobre","doi":"10.1080/08927014.2024.2324028","DOIUrl":null,"url":null,"abstract":"<p><p>Dual-species biofilms formed by <i>Candida albicans</i> and <i>Staphylococcus aureus</i> have high virulence and drug resistance. In this context, biosurfactants produced by <i>Pseudomonas aeruginosa</i> have been widely studied, of which a new derivative (RLmix_Arg) stands out for possible application in formulations. The objective of this study was to evaluate the antibiofilm activity of RLmix_Arg, both alone and incorporated in a gel prepared with Pluronic F-127, against dual-species biofilms of fluconazole-resistant <i>C. albicans</i> (FRCA) and methicillin-resistant <i>S. aureus</i> (MRSA) in impregnated catheters. Broth microdilution tests, MTT reduction assays of mature biofilms, impregnation of RLmix_Arg and its gel in peripheral venous catheters, durability tests and scanning electron microscopy (SEM) were performed. RLmix_Arg showed antimicrobial activity against <i>Candida</i> spp. and <i>S. aureus</i>, by reducing the cell viability of mixed biofilms of FRCA and MRSA, and preventing their formation in a peripheral venous catheter. The incorporation of this biosurfactant in the Pluronic F-127 gel considerably enhanced its antibiofilm activity. Thus, RLmix_Arg has potential application in gels for impregnation in peripheral venous catheters, helping to prevent development of dual-species biofilms of FRCA and MRSA.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial potential of a biosurfactant gel for the prevention of mixed biofilms formed by fluconazole-resistant <i>C. albicans</i> and methicillin-resistant <i>S. aureus</i> in catheters.\",\"authors\":\"Cecília Rocha da Silva, Lívia Gurgel do Amaral Valente Sá, João Batista de Andrade Neto, Fátima Daiana Dias Barroso, Vitória Pessoa de Farias Cabral, Daniel Sampaio Rodrigues, Lisandra Juvêncio da Silva, Iri Sandro Pampolha Lima, Lourdes Pérez, Anderson Ramos da Silva, Denise Ramos Moreira, Nágila Maria Pontes Silva Ricardo, Hélio Vitoriano Nobre\",\"doi\":\"10.1080/08927014.2024.2324028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dual-species biofilms formed by <i>Candida albicans</i> and <i>Staphylococcus aureus</i> have high virulence and drug resistance. In this context, biosurfactants produced by <i>Pseudomonas aeruginosa</i> have been widely studied, of which a new derivative (RLmix_Arg) stands out for possible application in formulations. The objective of this study was to evaluate the antibiofilm activity of RLmix_Arg, both alone and incorporated in a gel prepared with Pluronic F-127, against dual-species biofilms of fluconazole-resistant <i>C. albicans</i> (FRCA) and methicillin-resistant <i>S. aureus</i> (MRSA) in impregnated catheters. Broth microdilution tests, MTT reduction assays of mature biofilms, impregnation of RLmix_Arg and its gel in peripheral venous catheters, durability tests and scanning electron microscopy (SEM) were performed. RLmix_Arg showed antimicrobial activity against <i>Candida</i> spp. and <i>S. aureus</i>, by reducing the cell viability of mixed biofilms of FRCA and MRSA, and preventing their formation in a peripheral venous catheter. The incorporation of this biosurfactant in the Pluronic F-127 gel considerably enhanced its antibiofilm activity. Thus, RLmix_Arg has potential application in gels for impregnation in peripheral venous catheters, helping to prevent development of dual-species biofilms of FRCA and MRSA.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2324028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2324028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Antimicrobial potential of a biosurfactant gel for the prevention of mixed biofilms formed by fluconazole-resistant C. albicans and methicillin-resistant S. aureus in catheters.
Dual-species biofilms formed by Candida albicans and Staphylococcus aureus have high virulence and drug resistance. In this context, biosurfactants produced by Pseudomonas aeruginosa have been widely studied, of which a new derivative (RLmix_Arg) stands out for possible application in formulations. The objective of this study was to evaluate the antibiofilm activity of RLmix_Arg, both alone and incorporated in a gel prepared with Pluronic F-127, against dual-species biofilms of fluconazole-resistant C. albicans (FRCA) and methicillin-resistant S. aureus (MRSA) in impregnated catheters. Broth microdilution tests, MTT reduction assays of mature biofilms, impregnation of RLmix_Arg and its gel in peripheral venous catheters, durability tests and scanning electron microscopy (SEM) were performed. RLmix_Arg showed antimicrobial activity against Candida spp. and S. aureus, by reducing the cell viability of mixed biofilms of FRCA and MRSA, and preventing their formation in a peripheral venous catheter. The incorporation of this biosurfactant in the Pluronic F-127 gel considerably enhanced its antibiofilm activity. Thus, RLmix_Arg has potential application in gels for impregnation in peripheral venous catheters, helping to prevent development of dual-species biofilms of FRCA and MRSA.