Xiaoxia Yang, Suning Wang, Hang Li, Jochi Tseng, Zhonghua Wu, Sylvio Indris, Helmut Ehrenberg, Xiaodong Guo, Weibo Hua
{"title":"封面图片,第 2 卷第 1 号,2024 年 2 月","authors":"Xiaoxia Yang, Suning Wang, Hang Li, Jochi Tseng, Zhonghua Wu, Sylvio Indris, Helmut Ehrenberg, Xiaodong Guo, Weibo Hua","doi":"10.1002/elt2.35","DOIUrl":null,"url":null,"abstract":"<p>The cover image (DOI: 10.1002/elt2.18) illustrates the structural evolution mechanism of P3-type Na-deficient layered cathode materials through lithium incorporation. At the base rests a structural model of P3-type layered oxide, symbolizing a continuum from the present to the future, showcasing its potential as a cathode material for sodium-ion batteries. Above it, there is an O3-type layered oxide comprised of lithium ions, oxygen ions, and other transition metal ions. When subjected to high-temperature forces (depicted by the yellow light at the image's center), interaction between the O3-type and P3-type oxides triggers charge transfer (visualized as lightning) and ion transport (illustrated through particle motion), leading to a sequence of structural alterations culminating in diverse phase compositions of layered oxides.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.35","citationCount":"0","resultStr":"{\"title\":\"Cover Image, Volume 2, Number 1, February 2024\",\"authors\":\"Xiaoxia Yang, Suning Wang, Hang Li, Jochi Tseng, Zhonghua Wu, Sylvio Indris, Helmut Ehrenberg, Xiaodong Guo, Weibo Hua\",\"doi\":\"10.1002/elt2.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cover image (DOI: 10.1002/elt2.18) illustrates the structural evolution mechanism of P3-type Na-deficient layered cathode materials through lithium incorporation. At the base rests a structural model of P3-type layered oxide, symbolizing a continuum from the present to the future, showcasing its potential as a cathode material for sodium-ion batteries. Above it, there is an O3-type layered oxide comprised of lithium ions, oxygen ions, and other transition metal ions. When subjected to high-temperature forces (depicted by the yellow light at the image's center), interaction between the O3-type and P3-type oxides triggers charge transfer (visualized as lightning) and ion transport (illustrated through particle motion), leading to a sequence of structural alterations culminating in diverse phase compositions of layered oxides.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":100403,\"journal\":{\"name\":\"Electron\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.35\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elt2.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The cover image (DOI: 10.1002/elt2.18) illustrates the structural evolution mechanism of P3-type Na-deficient layered cathode materials through lithium incorporation. At the base rests a structural model of P3-type layered oxide, symbolizing a continuum from the present to the future, showcasing its potential as a cathode material for sodium-ion batteries. Above it, there is an O3-type layered oxide comprised of lithium ions, oxygen ions, and other transition metal ions. When subjected to high-temperature forces (depicted by the yellow light at the image's center), interaction between the O3-type and P3-type oxides triggers charge transfer (visualized as lightning) and ion transport (illustrated through particle motion), leading to a sequence of structural alterations culminating in diverse phase compositions of layered oxides.