用于超稳定锌金属阳极的氮化碳保护涂层结晶工程

Electron Pub Date : 2024-02-23 DOI:10.1002/elt2.29
Chen Liu, Yuxin Zhu, Shuanlong Di, Jiarui He, Ping Niu, Antonios Kelarakis, Marta Krysmann, Shulan Wang, Li Li
{"title":"用于超稳定锌金属阳极的氮化碳保护涂层结晶工程","authors":"Chen Liu,&nbsp;Yuxin Zhu,&nbsp;Shuanlong Di,&nbsp;Jiarui He,&nbsp;Ping Niu,&nbsp;Antonios Kelarakis,&nbsp;Marta Krysmann,&nbsp;Shulan Wang,&nbsp;Li Li","doi":"10.1002/elt2.29","DOIUrl":null,"url":null,"abstract":"<p>Ineffective control of dendrite growth and side reactions on Zn anodes significantly retards commercialization of aqueous Zn-ion batteries. Unlike conventional interfacial modification strategies that are primarily focused on component optimization or microstructural tuning, herein, we propose a crystallinity engineering strategy by developing highly crystalline carbon nitride protective layers for Zn anodes through molten salt treatment. Interestingly, the highly ordered structure along with sufficient functional polar groups and pre-intercalated K<sup>+</sup> endows the coating with high ionic conductivity, strong hydrophilicity, and accelerated ion diffusion kinetics. Theoretical calculations also confirm its enhanced Zn adsorption capability compared to commonly reported carbon nitride with amorphous or semi-crystalline structure and bare Zn. Benefiting from the aforementioned features, the as-synthesized protective layer enables a calendar lifespan of symmetric cells for 1100 h and outstanding stability of full cells with capacity retention of 91.5% after 1500 cycles. This work proposes a new conceptual strategy for Zn anode protection.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.29","citationCount":"0","resultStr":"{\"title\":\"Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes\",\"authors\":\"Chen Liu,&nbsp;Yuxin Zhu,&nbsp;Shuanlong Di,&nbsp;Jiarui He,&nbsp;Ping Niu,&nbsp;Antonios Kelarakis,&nbsp;Marta Krysmann,&nbsp;Shulan Wang,&nbsp;Li Li\",\"doi\":\"10.1002/elt2.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ineffective control of dendrite growth and side reactions on Zn anodes significantly retards commercialization of aqueous Zn-ion batteries. Unlike conventional interfacial modification strategies that are primarily focused on component optimization or microstructural tuning, herein, we propose a crystallinity engineering strategy by developing highly crystalline carbon nitride protective layers for Zn anodes through molten salt treatment. Interestingly, the highly ordered structure along with sufficient functional polar groups and pre-intercalated K<sup>+</sup> endows the coating with high ionic conductivity, strong hydrophilicity, and accelerated ion diffusion kinetics. Theoretical calculations also confirm its enhanced Zn adsorption capability compared to commonly reported carbon nitride with amorphous or semi-crystalline structure and bare Zn. Benefiting from the aforementioned features, the as-synthesized protective layer enables a calendar lifespan of symmetric cells for 1100 h and outstanding stability of full cells with capacity retention of 91.5% after 1500 cycles. This work proposes a new conceptual strategy for Zn anode protection.</p>\",\"PeriodicalId\":100403,\"journal\":{\"name\":\"Electron\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.29\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elt2.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果不能有效控制锌阳极上的枝晶生长和副反应,就会严重阻碍水性锌离子电池的商业化。传统的界面改性策略主要侧重于成分优化或微观结构调整,与此不同的是,我们在本文中提出了一种结晶度工程策略,即通过熔盐处理为锌阳极开发高度结晶的氮化碳保护层。有趣的是,高度有序的结构以及充足的功能极性基团和预钝化 K+ 使涂层具有高离子电导率、强亲水性和加速离子扩散动力学。理论计算也证实,与常见的无定形或半晶体结构氮化碳以及裸锌相比,该涂层具有更强的锌吸附能力。得益于上述特点,合成的保护层可使对称电池的使用寿命达到 1100 小时,并使完整电池具有出色的稳定性,在循环 1500 次后仍能保持 91.5% 的容量。这项工作为锌阳极保护提出了一种新的概念性策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes

Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes

Ineffective control of dendrite growth and side reactions on Zn anodes significantly retards commercialization of aqueous Zn-ion batteries. Unlike conventional interfacial modification strategies that are primarily focused on component optimization or microstructural tuning, herein, we propose a crystallinity engineering strategy by developing highly crystalline carbon nitride protective layers for Zn anodes through molten salt treatment. Interestingly, the highly ordered structure along with sufficient functional polar groups and pre-intercalated K+ endows the coating with high ionic conductivity, strong hydrophilicity, and accelerated ion diffusion kinetics. Theoretical calculations also confirm its enhanced Zn adsorption capability compared to commonly reported carbon nitride with amorphous or semi-crystalline structure and bare Zn. Benefiting from the aforementioned features, the as-synthesized protective layer enables a calendar lifespan of symmetric cells for 1100 h and outstanding stability of full cells with capacity retention of 91.5% after 1500 cycles. This work proposes a new conceptual strategy for Zn anode protection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信